RANSAC-based multi primitive building reconstruction from 3D point clouds

兰萨克 点云 几何本原 计算机科学 计算机视觉 分割 人工智能 点(几何) 参数统计 三维重建 建筑模型 数学 图像(数学) 几何学 模拟 统计
作者
Zhixin Li,Jie Shan
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:185: 247-260 被引量:66
标识
DOI:10.1016/j.isprsjprs.2021.12.012
摘要

Building model reconstruction from 3D point clouds has been investigated for several decades with increasing interests. Building models represented by one or more parametric primitives can assure regularity and provide semantic information for the reconstructed buildings. However, there exist challenges in reliably determining building primitives, especially for compound buildings with multiple primitives. This paper presents a multi primitive reconstruction (MPR) approach to segment a compound bounding into several predefined primitives and determine their parameters from the point clouds. The method consists of primitive segmentation through a two-step RANSAC strategy, followed by holistic primitive fitting, and 3D Boolean operations. The first step segments the point cloud of a building into planar patches. The second step applies RANSAC strategy to further segment the predefined building primitives, where only points on adjacent planar patches are sampled to achieve high computational efficiency. The most probable primitive is then selected based on a set of quality metrics and corresponding parameters are holistically estimated with the identified inliers to form the building model. Finally, the 3D Boolean operation is used to reconstruct a topologically consistent 3D building model from its compositional primitives. The proposed RANSAC-MPR method has following advantages. (1) The framework for primitive segmentation is efficient since the sampling only occurs to adjacent planar patches; (2) the type of building primitives can be identified based on a score function without using advanced learning process; (3) compound buildings can be reconstructed through 3D union of the primitives determined by holistic fitting. Tested with 1054 buildings in three lidar and photogrammetry point clouds, the development is able to produce compound building models with regularized primitives at 85% boundary consistency and overall accuracy of 7 cm, which is about 0.14 times and 0.56 times ground point spacing for the lidar and photogrammetry datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助叶子采纳,获得10
1秒前
2秒前
uniqueycd完成签到,获得积分10
3秒前
科研通AI5应助xieji采纳,获得10
3秒前
幸福的鑫鹏完成签到,获得积分10
4秒前
心心完成签到 ,获得积分10
5秒前
VirSnorlax完成签到,获得积分10
5秒前
甜蜜的白桃完成签到 ,获得积分10
5秒前
8秒前
减肥为窈窕完成签到,获得积分10
8秒前
zenabia完成签到 ,获得积分10
8秒前
qvB完成签到,获得积分10
9秒前
mito完成签到,获得积分10
9秒前
AInanaaa发布了新的文献求助10
9秒前
锋feng完成签到 ,获得积分10
11秒前
lvshiwen完成签到,获得积分10
12秒前
完美世界应助cuifeng采纳,获得30
12秒前
suiyi发布了新的文献求助10
13秒前
科研通AI5应助笨笨忘幽采纳,获得10
14秒前
16秒前
传奇3应助AKK采纳,获得10
16秒前
19秒前
HY完成签到 ,获得积分10
19秒前
李健应助leoluo采纳,获得10
20秒前
21秒前
深情安青应助宋晓静采纳,获得10
21秒前
Nancy发布了新的文献求助10
21秒前
Duke_ethan完成签到,获得积分10
24秒前
24秒前
tcf完成签到,获得积分10
25秒前
纪间完成签到,获得积分10
26秒前
卓初露完成签到 ,获得积分10
31秒前
32秒前
oysp完成签到,获得积分10
34秒前
37秒前
无花果应助upandcoming采纳,获得10
37秒前
GreenT完成签到,获得积分10
38秒前
LL发布了新的文献求助10
38秒前
_ban完成签到 ,获得积分10
38秒前
Solarenergy完成签到,获得积分0
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779389
求助须知:如何正确求助?哪些是违规求助? 3324920
关于积分的说明 10220490
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522