流出物
溶解有机碳
废水
化学
环境化学
有机质
生物利用度
铜
污水处理
有机化学
环境工程
环境科学
生物信息学
生物
作者
Benlin Dai,Yuyao Peng,Meifeng Zhang,Meng Yang,Yi Wu,Xujing Guo
标识
DOI:10.1016/j.ecoenv.2022.113567
摘要
Biological treatment can remove more than 89.8% of total organic carbon (TOC) and 94.4% of fluorescent dissolved organic matter (DOM) in the coking wastewater, thereby affecting the migration, transformation and bioavailability and binding characteristics of heavy metals (HMs). The results of parallel factor analysis (PARAFAC) show that protein-like materials accounted for 97.53% in the coking wastewater DOM, a large number of humic-like substances are produced and accounted for more than 55.40% after biological treatment. A new spectral data processing method, the 1/n-th power transformation after two-dimensional correlated spectroscopy (2D-COS) in combination with synchronous fluorescence spectra (SFS), can identify small features obscured by strong peaks, and reveal more binding sites as well as preserve the sequential order information. The result indicates that the preferential bonding of Cu(II) is at 306 nm (protein-like) for coking wastewater DOM, and at 514 nm (humic-like) for effluent DOM. The C−O group of esters and alcohols can preferentially complexate with Cu(II) in the coking wastewater and effluent DOM. The log KM values of PARAFAC components with Cu(II) are in the range of 3.59–5.06 for coking wastewater DOM, and in the range of 4.80–5.64 for the effluent DOM. Log KM values for protein-like materials with Cu(II) are higher than these for fulvic- and humic-like substances. Humic-like substances can form more stable complexes with Cu(II) in the effluent DOM. Biological treatment increases the chemical stability of DOM-Cu(II) complexes, thereby further reducing the environmental risk of Cu(II).
科研通智能强力驱动
Strongly Powered by AbleSci AI