Performance of hyperspectral data in predicting and mapping zinc concentration in soil

VNIR公司 高光谱成像 遥感 偏最小二乘回归 均方误差 环境科学 光谱带 地质学 数学 统计
作者
Weichao Sun,Shuo Liu,Xia Zhang,Haitao Zhu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:824: 153766-153766 被引量:39
标识
DOI:10.1016/j.scitotenv.2022.153766
摘要

Reflectance spectroscopy in visible, near-infrared, and short-wave infrared (VNIR-SWIR) region has been recognized as a promising alternative for prediction of heavy metal concentration in soil. Compared with VNIR-SWIR reflectance spectroscopy, VNIR reflectance spectroscopy is less affected by atmospheric water vapor and has relatively high signal to noise ratio. The performances of VNIR and VNIR-SWIR hyperspectral data in predicting and mapping heavy metal concentration in soil were explored. In this study, laboratory spectra of soil samples collected from an agricultural area and Advanced Hyperspectral Imaging (AHSI) remote sensing imagery were used to predict and map zinc (Zn) concentration with genetic algorithm and partial least squares regression (GA-PLSR). The entire spectral regions of VNIR-SWIR and VNIR and spectral subsets extracted from the entire spectral regions were used in the prediction. For the laboratory spectra, the combination of the spectral bands extracted from the absorption features at 500 nm and in 600-800 nm obtained the highest prediction accuracy with the root mean square error (RMSE) and coefficient of determination (R2) values of 8.90 mg kg-1 and 0.72. For soil spectra from AHSI remote sensing imagery, the highest prediction accuracy was achieved by using the spectral bands extracted from the absorption feature in 600-800 nm with the RMSE and R2 values of 9.02 mg kg-1 and 0.75. Soil Zn concentration maps were generated with the established prediction models using AHSI remote sensing imagery. Analysis on the Zn concentration maps shows that the prediction model established using the spectral bands extracted from the absorption feature in 600-800 nm has a better performance in mapping Zn concentration. The results indicate that VNIR hyperspectral data outperforms VNIR-SWIR hyperspectral data in predicting and mapping Zn concentration in soil, which provides an alternative to the application of hyperspectral data in soil science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助虚心的芹采纳,获得10
1秒前
LaTeXer应助研友_xnEOX8采纳,获得50
2秒前
张强发布了新的文献求助10
2秒前
我是老大应助小芋泥采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
Dean应助科研通管家采纳,获得50
3秒前
lancer发布了新的文献求助10
3秒前
桐桐应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
4秒前
成就的忆灵完成签到,获得积分10
4秒前
cc发布了新的文献求助10
4秒前
5秒前
hyn发布了新的文献求助10
6秒前
SuperZzz发布了新的文献求助10
6秒前
6秒前
子车茗应助jjf采纳,获得30
7秒前
子车茗应助jjf采纳,获得30
7秒前
JamesPei应助jjf采纳,获得10
7秒前
一一应助郝璐采纳,获得10
7秒前
7秒前
ivar完成签到,获得积分10
7秒前
张强完成签到,获得积分10
9秒前
勇敢的蝙蝠侠完成签到 ,获得积分10
9秒前
刚入坑的科研人完成签到,获得积分10
9秒前
bo完成签到,获得积分20
9秒前
atong完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
香蕉觅云应助真不错采纳,获得10
11秒前
汉堡包应助熙慕采纳,获得10
11秒前
思源应助Aimeee采纳,获得10
11秒前
Mr_Yilu完成签到,获得积分10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610911
求助须知:如何正确求助?哪些是违规求助? 4695350
关于积分的说明 14886541
捐赠科研通 4723667
什么是DOI,文献DOI怎么找? 2545322
邀请新用户注册赠送积分活动 1510085
关于科研通互助平台的介绍 1473121