马尔可夫链
节点(物理)
遍历理论
采样(信号处理)
随机矩阵
计算机科学
班级(哲学)
马尔科夫蒙特卡洛
选择(遗传算法)
数学
马尔可夫过程
数学优化
人工智能
统计
机器学习
贝叶斯概率
滤波器(信号处理)
工程类
数学分析
结构工程
计算机视觉
作者
Haidong Li,Yijie Peng,Xiaoyun Xu,Bernd Heidergott,Chun‐Hung Chen
标识
DOI:10.1016/j.fmre.2022.01.018
摘要
In this study, we consider the problem of node ranking in a random network. A Markov chain is defined for the network, and its transition probability matrix is unknown but can be learned by sampling random interactions among nodes. Our objective is to decompose the Markov chain into several ergodic classes and select the best node in each ergodic class. We propose a dynamic sampling procedure, which gives a probability guarantee on correct decomposition and maximizes a weighted probability of correct selection of the best node in each ergodic class. Numerical experiment results demonstrate the efficiency of the proposed sampling procedure.
科研通智能强力驱动
Strongly Powered by AbleSci AI