高分子
代表(政治)
相似性(几何)
计算机科学
图形
化学
人工智能
机器学习
理论计算机科学
生物化学
政治学
政治
图像(数学)
法学
作者
Somesh Mohapatra,Joyce An,Rafael Gómez‐Bombarelli
标识
DOI:10.1088/2632-2153/ac545e
摘要
Abstract The near-infinite chemical diversity of natural and artificial macromolecules arises from the vast range of possible component monomers, linkages, and polymers topologies. This enormous variety contributes to the ubiquity and indispensability of macromolecules but hinders the development of general machine learning methods with macromolecules as input. To address this, we developed a chemistry-informed graph representation of macromolecules that enables quantifying structural similarity, and interpretable supervised learning for macromolecules. Our work enables quantitative chemistry-informed decision-making and iterative design in the macromolecular chemical space.
科研通智能强力驱动
Strongly Powered by AbleSci AI