Prospective, multi-site study of patient outcomes after implementation of the TREWS machine learning-based early warning system for sepsis

医学 败血症 前瞻性队列研究 预警系统 急诊医学 预警系统 重症监护医学 内科学 计算机科学 机器学习 医疗急救 电信
作者
Roy J. Adams,Katharine E. Henry,Anirudh Sridharan,Hossein Soleimani,Andong Zhan,Nishi Rawat,Lauren Johnson,David N. Hager,Sara E. Cosgrove,Andrew Markowski,Eili Klein,Edward S. Chen,Mustapha Saheed,Maureen Henley,Sheila Miranda,Katrina Houston,Robert C. Linton,Anushree R. Ahluwalia,Albert W. Wu,Suchi Saria
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:28 (7): 1455-1460 被引量:186
标识
DOI:10.1038/s41591-022-01894-0
摘要

Early recognition and treatment of sepsis are linked to improved patient outcomes. Machine learning-based early warning systems may reduce the time to recognition, but few systems have undergone clinical evaluation. In this prospective, multi-site cohort study, we examined the association between patient outcomes and provider interaction with a deployed sepsis alert system called the Targeted Real-time Early Warning System (TREWS). During the study, 590,736 patients were monitored by TREWS across five hospitals. We focused our analysis on 6,877 patients with sepsis who were identified by the alert before initiation of antibiotic therapy. Adjusting for patient presentation and severity, patients in this group whose alert was confirmed by a provider within 3 h of the alert had a reduced in-hospital mortality rate (3.3%, confidence interval (CI) 1.7, 5.1%, adjusted absolute reduction, and 18.7%, CI 9.4, 27.0%, adjusted relative reduction), organ failure and length of stay compared with patients whose alert was not confirmed by a provider within 3 h. Improvements in mortality rate (4.5%, CI 0.8, 8.3%, adjusted absolute reduction) and organ failure were larger among those patients who were additionally flagged as high risk. Our findings indicate that early warning systems have the potential to identify sepsis patients early and improve patient outcomes and that sepsis patients who would benefit the most from early treatment can be identified and prioritized at the time of the alert Prospective evaluation of a machine learning-based early warning system for sepsis, deployed at five hospitals, showed that interaction of health-care providers with the system was associated with better patient outcomes, including reduced in-hospital mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jjc完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
今后应助李家龙采纳,获得10
2秒前
DUOMI发布了新的文献求助10
2秒前
BSFXZ发布了新的文献求助10
3秒前
justonly333发布了新的文献求助10
3秒前
zf发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
臭嘴橘子发布了新的文献求助10
5秒前
wanci应助洁净的士晋采纳,获得10
5秒前
jie完成签到,获得积分10
6秒前
6秒前
哈哈哈哈酷酷酷完成签到,获得积分10
6秒前
张亚茹发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
RQ发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
所所应助My采纳,获得10
8秒前
思源应助清爽翠芙采纳,获得10
8秒前
9秒前
科研通AI5应助孙朱珠采纳,获得10
9秒前
10秒前
10秒前
灵巧的又琴完成签到,获得积分10
10秒前
小二郎应助霓霓采纳,获得10
10秒前
10秒前
11秒前
convergent发布了新的文献求助30
11秒前
如意静白发布了新的文献求助10
11秒前
12秒前
lq完成签到,获得积分10
12秒前
13秒前
DUOMI完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Further Studies on the Gold-Catalyzed Oxidative Domino Cyclization/Cycloaddition to Give Polyfunctional Tetracycles 400
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4299041
求助须知:如何正确求助?哪些是违规求助? 3824235
关于积分的说明 11972497
捐赠科研通 3465839
什么是DOI,文献DOI怎么找? 1900854
邀请新用户注册赠送积分活动 948632
科研通“疑难数据库(出版商)”最低求助积分说明 850976