医学
败血症
前瞻性队列研究
预警系统
急诊医学
预警系统
重症监护医学
内科学
计算机科学
机器学习
医疗急救
电信
作者
Roy J. Adams,Katharine E. Henry,Anirudh Sridharan,Hossein Soleimani,Andong Zhan,Nishi Rawat,Lauren Johnson,David N. Hager,Sara E. Cosgrove,Andrew Markowski,Eili Klein,Edward S. Chen,Mustapha Saheed,Maureen Henley,Sheila Miranda,Katrina Houston,Robert C. Linton,Anushree R. Ahluwalia,Albert W. Wu,Suchi Saria
出处
期刊:Nature Medicine
[Nature Portfolio]
日期:2022-07-01
卷期号:28 (7): 1455-1460
被引量:186
标识
DOI:10.1038/s41591-022-01894-0
摘要
Early recognition and treatment of sepsis are linked to improved patient outcomes. Machine learning-based early warning systems may reduce the time to recognition, but few systems have undergone clinical evaluation. In this prospective, multi-site cohort study, we examined the association between patient outcomes and provider interaction with a deployed sepsis alert system called the Targeted Real-time Early Warning System (TREWS). During the study, 590,736 patients were monitored by TREWS across five hospitals. We focused our analysis on 6,877 patients with sepsis who were identified by the alert before initiation of antibiotic therapy. Adjusting for patient presentation and severity, patients in this group whose alert was confirmed by a provider within 3 h of the alert had a reduced in-hospital mortality rate (3.3%, confidence interval (CI) 1.7, 5.1%, adjusted absolute reduction, and 18.7%, CI 9.4, 27.0%, adjusted relative reduction), organ failure and length of stay compared with patients whose alert was not confirmed by a provider within 3 h. Improvements in mortality rate (4.5%, CI 0.8, 8.3%, adjusted absolute reduction) and organ failure were larger among those patients who were additionally flagged as high risk. Our findings indicate that early warning systems have the potential to identify sepsis patients early and improve patient outcomes and that sepsis patients who would benefit the most from early treatment can be identified and prioritized at the time of the alert Prospective evaluation of a machine learning-based early warning system for sepsis, deployed at five hospitals, showed that interaction of health-care providers with the system was associated with better patient outcomes, including reduced in-hospital mortality.
科研通智能强力驱动
Strongly Powered by AbleSci AI