Two-Dimensional Gallium Selenide (GaSe) Material for Nanoelectronics Application

范德瓦尔斯力 材料科学 堆积 密度泛函理论 石墨烯 布里渊区 电子结构 纳米技术 硫系化合物 电子迁移率 纳米电子学 光电子学 凝聚态物理 物理 计算化学 化学 量子力学 核磁共振 分子
作者
Lida Ansari,Paul K. Hurley,Farzan Gity
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (12): 868-868 被引量:1
标识
DOI:10.1149/ma2022-0112868mtgabs
摘要

As silicon-based transistors have approached their physical limits, it is urgent to explore alternative materials with a suitable bandgap and high mobility for next generation electronic logic devices. Two‐dimensional (2D) materials have attracted significant attention in the last few years due to their potential exotic transport physics and technological applications in various fields, such as a significant device downscaling for high intensity integration. Recently, a variety of 2D materials have been explored, including graphene [1] and transition metal dichalcogenides (TMDs), e.g., MoS2 [2,3], WS2 [4], and PtSe2 [5-7]. Although most research has focused on TMDs, recently 2D layered metal monochalcogenides, e.g., GaSe, have attracted increasing interest as a result of their unique electronic properties, making this class of materials different from TMDs. GaSe crystal structure comprises vertically stacked Ga-Se-Se-Ga layers with relatively weak van der Waals interactions. There are two main GaSe polytypes which differ in the stacking sequence of the basis layer units. Side- and top-view schematics of β‐GaSe and ε‐GaSe are shown in Fig. 1a. In this study, the electronic structure of both GaSe layered material polytypes is investigated using density functional theory (DFT) as implemented in QuantumATK [8]. Brillouin-zone integrations were performed according to the Monkhorst-Pack scheme [9] with a density of approximately 10 k-points per angstrom. Geometry optimizations were performed with the convergence criterion of 0.02 eV/Å [10]. Van der Waals (vdW) interactions improve the structural and electronic properties description obtained by DFT calculations and is included in our calculations through D3 version of Grimme’s dispersion corrections [11]. To provide an improved determination of the bandgap energies, the GW (G: Green's function and W: screened Coulomb interaction) method in conjunction with a many body perturbation theory (MBPT) correction could be used. However, GW technique is computationally very expensive and could be implemented for systems with very limited number of atoms [12,13]. Hence, for this study, methods such as Heyd-Scuseria-Ernzerhof (HSE) hybrid functional [14,15] and GGA-1/2 [16] methods were included in our model to achieve more accurate bandgap compared to the experimental values. The β‐GaSe exhibits a DFT-obtained direct bandgap of ~1 eV while the corrected value is 2 eV. ε‐GaSe, however, shows slight indirect bandgap of 0.8 eV (DFT) and 1.7 eV (corrected), with just 25 meV difference between the indirect gap and indirect gap. A double-gate Schottky barrier field-effect transistor (FET) consisting of Ti source and drain contacts and ultrathin GaSe channel is also investigated. Schematic of the FET is shown in Fig. 1b. The device performance analysis such as current-voltage characteristics, subthreshold slope, and on/off ratio are carried out by means of non-equilibrium Green’s function together with DFT Hamiltonian [17]. The output characteristic of the proposed device exhibits an ON/OFF current ratio of more than 7 orders of magnitude. The presence of point defects in ultrathin 2D films is largely inevitable [18], even under optimized synthesis conditions, which can be either engineered and considered as a useful feature, or undesirable. In either case, understanding the impacts of point defects on the electronic structure of 2D materials are required to allow application-based optimization. In this talk, to provide insight into the defect-induced modifications to the GaSe electronic properties, in particular the properties of the states associated with the defects, we will compare the band-structure of the pristine GaSe with the band-structure of the GaSe with Ge and Se vacancies, for both GaSe polytypes. We have also fabricated back-gated devices by mechanically exfoliating ultrathin GaSe flakes from bulk crystal onto oxide-on-Si substrate. Fig. 1c shows an SEM image of the device. Our experimental results demonstrate the basic transport characteristics of thin-film transistor, which may offer more opportunities for potential applications such as photodetectors, gas sensors, and optoelectronic devices, in addition to nanoelectronics FETs, due to GaSe large bandgap. References: [1] Nature Materials, 6, 183, 2007. [2] 2D Materials, 8, 025008, 2020. [3] 2D Materials, 7, 025040, 2020. [4] ACS Materials Letters, 2, 511, 2020. [5] ACS Omega, 4, pp. 17487-17493, 2019. [6] Advanced Functional Materials, 2103936, 2021. [7] Advanced Functional Materials, 2105722, 2021. [8] J. Phys.: Condens. Matter, 32 015901, 2020 [9] Phys. Rev. B, 13, 5188, 1976. [10] J. Applied Physics, 129, 015701, 2021. [11] J. Chem. Phys., 132, 154104, 2010. [12] J. Phys.: Condens. Matter, 29 065301, 2017. [13] Appl. Phys. Lett., 110, 093111, 2017. [14] J. Chem. Phys. 118, 8207, 2003. [15] Applied Materials Today, 25, 101163, 2021. [16] AIP Advances, 1, 032119, 2011. [17] J. Phys.: Condens. Matter., 30, 414003, 2018. [18] Npj 2D Materials and Applications, 5, 14, 2021. . Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助王艺霖采纳,获得10
刚刚
7秒前
乐人完成签到 ,获得积分10
9秒前
王艺霖发布了新的文献求助10
11秒前
sfwrbh发布了新的文献求助10
12秒前
思维隋完成签到 ,获得积分10
19秒前
sdjjis完成签到 ,获得积分10
19秒前
sfwrbh完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
26秒前
loren313完成签到,获得积分0
30秒前
有魅力老三完成签到 ,获得积分10
31秒前
充电宝应助王艺霖采纳,获得10
33秒前
五月完成签到 ,获得积分10
33秒前
Xzx1995完成签到 ,获得积分10
35秒前
cherry驳回了xu1227应助
37秒前
43秒前
Aphcity应助Kelvin.Tsi采纳,获得150
43秒前
你好呀嘻嘻完成签到 ,获得积分10
43秒前
量子星尘发布了新的文献求助10
45秒前
笔墨纸砚完成签到 ,获得积分10
46秒前
王艺霖发布了新的文献求助10
47秒前
Xulyun完成签到 ,获得积分10
49秒前
51秒前
56秒前
han完成签到,获得积分10
56秒前
机智的孤兰完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
沈惠映完成签到 ,获得积分10
1分钟前
河堤完成签到 ,获得积分10
1分钟前
无辜的行云完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
江漓完成签到 ,获得积分10
1分钟前
cherry给cherry的求助进行了留言
1分钟前
雪流星完成签到 ,获得积分10
1分钟前
善学以致用应助王艺霖采纳,获得10
1分钟前
水流众生完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
在水一方应助陆上飞采纳,获得10
1分钟前
泡泡茶壶o完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4958056
求助须知:如何正确求助?哪些是违规求助? 4219196
关于积分的说明 13133397
捐赠科研通 4002249
什么是DOI,文献DOI怎么找? 2190284
邀请新用户注册赠送积分活动 1205015
关于科研通互助平台的介绍 1116677