抗原
互补性(分子生物学)
计算生物学
概率逻辑
抗体
计算机科学
蛋白质设计
生成模型
生成语法
人工智能
生物
蛋白质结构
免疫学
遗传学
生物化学
作者
Shitong Luo,Yufeng Su,Xingang Peng,Sheng Wang,Jian Peng,Jianzhu Ma
标识
DOI:10.1101/2022.07.10.499510
摘要
Abstract Antibodies are immune system proteins that protect the host by binding to specific antigens such as viruses and bacteria. The binding between antibodies and antigens is mainly determined by the complementarity-determining regions (CDR) of the antibodies. In this work, we develop a deep generative model that jointly models sequences and structures of CDRs based on diffusion probabilistic models and equivariant neural networks. Our method is the first deep learning-based method that generates antibodies explicitly targeting specific antigen structures and is one of the earliest diffusion probabilistic models for protein structures. The model is a “Swiss Army Knife” capable of sequence-structure co-design, sequence design for given backbone structures, and antibody optimization. We conduct extensive experiments to evaluate the quality of both sequences and structures of designed antibodies. We find that our model could yield competitive results in binding affinity measured by biophysical energy functions and other protein design metrics.
科研通智能强力驱动
Strongly Powered by AbleSci AI