偏微分方程
搭配(遥感)
搭配法
人工神经网络
数值分析
应用数学
数值偏微分方程
数学
计算机科学
一阶偏微分方程
微分方程
偏导数
点(几何)
数学优化
数学分析
常微分方程
人工智能
几何学
机器学习
作者
Gamini Dissanayake,N. Phan‐Thien
标识
DOI:10.1002/cnm.1640100303
摘要
Abstract A numerical method, based on neural‐network‐based functions, for solving partial differential equations is reported in the paper. Using a ‘universal approximator’ based on a neural network and point collocation, the numerical problem of solving the partial differential equation is transformed to an unconstrained minimization problem. The method is extremely easy to implement and is suitable for obtaining an approximate solution in a short period of time. The technique is illustrated with the aid of two numerical examples.
科研通智能强力驱动
Strongly Powered by AbleSci AI