The dispersive properties of the atomic transition in the rubidium ${D}_{2}$ line ($5{S}_{\frac{1}{2}}\ensuremath{-}5{P}_{\frac{3}{2}}$) at 780.0 nm are measured with a Mach-Zehnder interferometer when an additional coupling field at 775.8 nm is applied to an upper transition ($5{P}_{\frac{3}{2}}\ensuremath{-}5{D}_{\frac{5}{2}}$). This ladder-type system is observed to exhibit electromagnetically induced transparency together with a rapidly varying refractive index. A reduction in group velocity for the probe beam (${v}_{g}=\frac{c}{13.2}$) is inferred from the measured dispersion curve with 52.5% suppressed absorption on resonance.