Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process‐based model

环境科学 库存(枪支) 土壤碳 比例(比率) 点估计 缩放比例 碳储量 置信区间 计量经济学 生态系统 土壤科学 统计 数学 气候变化 土壤水分 生态学 地理 地图学 几何学 生物 考古
作者
Stephen M. Ogle,F. Jay Breidt,Mark Easter,Steve Williams,Kendrick Killian,Keith Paustian
出处
期刊:Global Change Biology [Wiley]
卷期号:16 (2): 810-822 被引量:230
标识
DOI:10.1111/j.1365-2486.2009.01951.x
摘要

Abstract Process‐based model analyses are often used to estimate changes in soil organic carbon (SOC), particularly at regional to continental scales. However, uncertainties are rarely evaluated, and so it is difficult to determine how much confidence can be placed in the results. Our objective was to quantify uncertainties across multiple scales in a process‐based model analysis, and provide 95% confidence intervals for the estimates. Specifically, we used the Century ecosystem model to estimate changes in SOC stocks for US croplands during the 1990s, addressing uncertainties in model inputs, structure and scaling of results from point locations to regions and the entire country. Overall, SOC stocks increased in US croplands by 14.6 Tg C yr −1 from 1990 to 1995 and 17.5 Tg C yr −1 during 1995 to 2000, and uncertainties were ±22% and ±16% for the two time periods, respectively. Uncertainties were inversely related to spatial scale, with median uncertainties at the regional scale estimated at ±118% and ±114% during the early and latter part of 1990s, and even higher at the site scale with estimates at ±739% and ±674% for the time periods, respectively. This relationship appeared to be driven by the amount of the SOC stock change; changes in stocks that exceeded 200 Gg C yr −1 represented a threshold where uncertainties were always lower than ±100%. Consequently, the amount of uncertainty in estimates derived from process‐based models will partly depend on the level of SOC accumulation or loss. In general, the majority of uncertainty was associated with model structure in this application, and so attaining higher levels of precision in the estimates will largely depend on improving the model algorithms and parameterization, as well as increasing the number of measurement sites used to evaluate the structural uncertainty.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DY发布了新的文献求助10
1秒前
raemourn完成签到,获得积分10
1秒前
Dolores完成签到,获得积分10
2秒前
tomato完成签到,获得积分10
2秒前
称心的绿柏完成签到,获得积分10
2秒前
芋头完成签到,获得积分10
3秒前
余若翠发布了新的文献求助10
4秒前
聪明元蝶完成签到,获得积分10
4秒前
领导范儿应助Senna采纳,获得10
4秒前
4秒前
4秒前
5秒前
mumu完成签到,获得积分10
5秒前
111发布了新的文献求助10
5秒前
正直的半梅完成签到 ,获得积分10
6秒前
7秒前
GTthree完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
Hello应助tomato采纳,获得10
9秒前
史昊昊发布了新的文献求助10
10秒前
狗咚嘻完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
Alex完成签到,获得积分10
11秒前
xzh完成签到,获得积分10
12秒前
12秒前
柠檬加冰发布了新的文献求助10
13秒前
14秒前
轻语发布了新的文献求助10
14秒前
淡然冬灵应助Declan采纳,获得100
14秒前
GTthree完成签到,获得积分10
14秒前
酷波er应助DY采纳,获得10
15秒前
方百招发布了新的文献求助10
15秒前
白云发布了新的文献求助10
15秒前
小王小王发布了新的文献求助10
16秒前
烤肠发布了新的文献求助10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835165
求助须知:如何正确求助?哪些是违规求助? 3377669
关于积分的说明 10499742
捐赠科研通 3097244
什么是DOI,文献DOI怎么找? 1705614
邀请新用户注册赠送积分活动 820629
科研通“疑难数据库(出版商)”最低求助积分说明 772149