Conservation and prediction of solvent accessibility in protein families

同源建模 蛋白质二级结构 计算机科学 序列(生物学) 蛋白质结构 生物系统 算法 数学 化学 生物 遗传学 生物化学
作者
Burkhard Rost,Chris Sander
出处
期刊:Proteins [Wiley]
卷期号:20 (3): 216-226 被引量:669
标识
DOI:10.1002/prot.340200303
摘要

Abstract Currently, the prediction of three‐dimensional (3D) protein structure from sequence alone is an exceedingly difficult task. As an intermediate step, a much simpler task has been pursued extensively: predicting 1D strings of secondary structure. Here, we present an analysis of another 1D projection from 3D structure: the relative solvent accessibility of each residue. We show that solvent accessibility is less conserved in 3D homologues than is secondary structure, and hence is predicted less accurately from automatic homology modeling; the correlation coefficient of relative solvent accessibility between 3D homologues is only 0.77, and the average accuracy of predictions based on sequence alignments is only 0.68. The latter number provides an effective upper limit on the accuracy of predicting accessibility from sequence when homology modeling is not possible. We introduce a neural network system that predicts relative solvent accessibility (projected onto ten discrete states) using evolutionary profiles of amino acid substitutions derived from multiple sequence alignments. Evaluated in a cross‐validation test on 238 unique proteins, the correlation between predicted and observed relative accessibility is 0.54. Interpreted in terms of a three‐state (buried, intermediate, exposed) description of relative accessibility, the fraction of correctly predicted residue states is about 58%. In absolute terms this accuracy appears poor, but given the relatively low conservation of accessibility in 3D families, the network system is not far from its likely optimal performance. The most reliably predicted fraction of the residues (50%) is predicted as accurately as by automatic homology modeling. Prediction is best for buried residues, e.g., 86% of the completely buried sites are correctly predicted as having 0% relative accessibility. © 1994 Wiley‐Liss, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万安安发布了新的文献求助10
刚刚
香橼琥珀关注了科研通微信公众号
刚刚
爱骑车的CH完成签到 ,获得积分10
1秒前
shezhinicheng完成签到,获得积分10
1秒前
吴子优完成签到,获得积分10
1秒前
1秒前
塔麻头完成签到,获得积分10
2秒前
华仔应助JY采纳,获得10
2秒前
lingck发布了新的文献求助10
3秒前
有人应助kirito1211采纳,获得10
3秒前
风中惜寒发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
风趣甜瓜完成签到,获得积分20
5秒前
5秒前
5秒前
pifu发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
万安安完成签到,获得积分10
6秒前
yizongting发布了新的文献求助10
6秒前
长情储发布了新的文献求助10
7秒前
yangziwei完成签到,获得积分10
8秒前
Nat完成签到,获得积分10
8秒前
学习完成签到,获得积分10
8秒前
周爱李发布了新的文献求助10
8秒前
研究生发布了新的文献求助10
9秒前
慕青应助Serendipity采纳,获得10
9秒前
英俊的铭应助pifu采纳,获得10
9秒前
幽默芸遥发布了新的文献求助10
9秒前
所所应助风中惜寒采纳,获得30
9秒前
烂漫香水发布了新的文献求助10
10秒前
11秒前
科研小吴完成签到,获得积分20
11秒前
难过盼海发布了新的文献求助10
11秒前
ganerwahaha完成签到,获得积分10
11秒前
11秒前
ht关闭了ht文献求助
12秒前
花照林完成签到,获得积分10
12秒前
叶子完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473665
求助须知:如何正确求助?哪些是违规求助? 4575821
关于积分的说明 14354677
捐赠科研通 4503392
什么是DOI,文献DOI怎么找? 2467604
邀请新用户注册赠送积分活动 1455446
关于科研通互助平台的介绍 1429459