Genetic inducible fate mapping in mouse: Establishing genetic lineages and defining genetic neuroanatomy in the nervous system

命运图 生物 细胞命运测定 胚胎干细胞 发育生物学 后脑 器官发生 重组酶 神经科学 遗传学 胚胎 基因 进化生物学 转录因子 重组
作者
Alexandra L. Joyner,Mark Zervas
出处
期刊:Developmental Dynamics [Wiley]
卷期号:235 (9): 2376-2385 被引量:175
标识
DOI:10.1002/dvdy.20884
摘要

A fascinating aspect of developmental biology is how organs are assembled in three dimensions over time. Fundamental to understanding organogenesis is the ability to determine when and where specific cell types are generated, the lineage of each cell, and how cells move to reside in their final position. Numerous methods have been developed to mark and follow the fate of cells in various model organisms used by developmental biologists, but most are not readily applicable to mouse embryos in utero because they involve physical marking of cells through injection of tracers. The advent of sophisticated transgenic and gene targeting techniques, combined with the use of site-specific recombinases, has revolutionized fate mapping studies in mouse. Furthermore, using genetic fate mapping to mark cells has opened up the possibility of addressing fundamental questions that cannot be studied with traditional methods of fate mapping in other organisms. Specifically, genetic fate mapping allows both the relationship between embryonic gene expression and cell fate (genetic lineage) to be determined, as well as the link between gene expression domains and anatomy (genetic anatomy) to be established. In this review, we present the ever-evolving development of genetic fate mapping techniques in mouse, especially the recent advance of Genetic Inducible Fate Mapping. We then review recent studies in the nervous system (focusing on the anterior hindbrain) as well as in the limb and with adult stem cells to highlight fundamental developmental processes that can be discovered using genetic fate mapping approaches. We end with a look toward the future at a powerful new approach that combines genetic fate mapping with cellular phenotyping alleles to study cell morphology, physiology, and function using examples from the nervous system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好名字发布了新的文献求助10
刚刚
moffy发布了新的文献求助10
刚刚
科研通AI6应助聪明的大叔采纳,获得10
刚刚
华仔应助清脆的一一采纳,获得10
刚刚
FashionBoy应助高高以松采纳,获得10
1秒前
Naive发布了新的文献求助10
1秒前
percy发布了新的文献求助10
1秒前
乐乐应助Hui采纳,获得30
2秒前
易渤超发布了新的文献求助30
2秒前
尉浩泽完成签到,获得积分10
3秒前
嘿嘿发布了新的文献求助10
3秒前
无心。发布了新的文献求助10
3秒前
小巧的风华完成签到,获得积分20
3秒前
pyy发布了新的文献求助10
4秒前
cc发布了新的文献求助10
5秒前
陈麦发布了新的文献求助10
5秒前
5秒前
归尘发布了新的文献求助10
5秒前
6秒前
小二郎应助Riggle G采纳,获得10
6秒前
6秒前
天天快乐应助ht采纳,获得10
6秒前
6秒前
二依完成签到,获得积分10
6秒前
好名字完成签到,获得积分20
7秒前
科研通AI6应助尉浩泽采纳,获得10
7秒前
英俊的铭应助Zkxxxx采纳,获得10
7秒前
7秒前
8秒前
NexusExplorer应助arizaki7采纳,获得10
9秒前
善学以致用应助arizaki7采纳,获得10
9秒前
英姑应助arizaki7采纳,获得10
9秒前
10秒前
10秒前
10秒前
Ava应助欧科狗采纳,获得10
10秒前
所所应助轻松盼雁采纳,获得10
10秒前
Yyyyyyyyy完成签到,获得积分10
10秒前
科研通AI2S应助percy采纳,获得10
10秒前
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726