转速
振动
灰度
断层(地质)
方位(导航)
信号(编程语言)
声学
局部二进制模式
二进制数
包络线(雷达)
计算机科学
物理
直方图
人工智能
数学
地质学
经典力学
电信
图像(数学)
地震学
算术
程序设计语言
雷达
作者
Sheraz Ali Khan,Jong-Myon Kim
摘要
Structural vibrations of bearing housings are used for diagnosing fault conditions in bearings, primarily by searching for characteristic fault frequencies in the envelope power spectrum of the vibration signal. The fault frequencies depend on the non-stationary angular speed of the rotating shaft. This paper explores an imaging-based approach to achieve rotational speed independence. Cycle length segments of the rectified vibration signal are stacked to construct grayscale images which exhibit unique textures for each fault. These textures show insignificant variation with the rotational speed, which is confirmed by the classification results using their local binary pattern histograms.
科研通智能强力驱动
Strongly Powered by AbleSci AI