Theoretical Understanding of the Reaction Mechanism of SiO2 Atomic Layer Deposition

原子层沉积 材料科学 微电子 路易斯酸 薄膜 纳米技术 化学 催化作用 有机化学
作者
Guoyong Fang,Lina Xu,Jing Ma,Aidong Li
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:28 (5): 1247-1255 被引量:35
标识
DOI:10.1021/acs.chemmater.5b04422
摘要

Atomic layer deposition (ALD) is a powerful nanofabrication technique for the preparation of uniform, conformal, and ultrathin films and allows accurate control of the composition and thickness of thin films at the atomic level. To date, ALD has been used for the growth of various materials, including oxides, nitrides, sulfides, metals, elements, compound semiconductors, and organic and organic–inorganic hybrid materials. As one of the most important inorganic materials, silicon dioxide (SiO2) has been used in the fields of microelectronics, catalysis, and energy storage and conversion. Various SiO2 ALD methods have been developed, which have expanded the research and applications of ALD chemistry and technology. Recent advances concerning the reaction mechanisms of SiO2 ALD have further deepened our understanding of the surface chemistry and related catalysis in the ALD of SiO2 and other oxides. Thin films of SiO2 can be obtained by means of thermal ALD and energy-enhanced ALD. Thermal ALD of SiO2 includes H2O-based ALD without a catalyst, room-temperature ALD (RT-ALD) catalyzed by a Lewis base, and rapid ALD (RALD) catalyzed by a Lewis acid. Energy-enhanced ALD of SiO2 encompasses plasma-enhanced ALD and O3-based ALD using aminosilane. In this review, we highlight the significance and advantages of ALD and introduce many methods of SiO2 ALD. Subsequently, theoretical advances concerning reaction mechanisms of SiO2 ALD are summarized. The related catalysis phenomena are highlighted, and their possible applications are speculated upon. Finally, a conclusion and perspective on the catalysis in the ALD growth of SiO2 is provided. It is expected that theoretical research on SiO2 ALD will enhance our comprehension of the chemistry and catalysis pertaining to ALD, provide a guide for the design of more effective Si precursors for SiO2 ALD, and lead to further improvement in the ALD preparation of other oxides and their nanolaminates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
su完成签到,获得积分10
2秒前
名丿完成签到,获得积分10
3秒前
3秒前
4秒前
科研小白发布了新的文献求助10
7秒前
8秒前
menxiaomei发布了新的文献求助30
9秒前
key关闭了key文献求助
14秒前
懒洋洋完成签到,获得积分10
18秒前
19秒前
科研通AI2S应助SEM小菜鸡采纳,获得10
21秒前
23秒前
赘婿应助zlimu采纳,获得10
24秒前
qingkong完成签到 ,获得积分10
24秒前
西西完成签到,获得积分10
24秒前
25秒前
menxiaomei完成签到,获得积分10
25秒前
27秒前
ffff完成签到,获得积分10
27秒前
朽木完成签到,获得积分10
28秒前
zzz发布了新的文献求助10
29秒前
情怀应助陈补天采纳,获得10
29秒前
若邻发布了新的文献求助10
30秒前
地三鲜发布了新的文献求助10
30秒前
科研通AI5应助qq.com采纳,获得10
32秒前
大个应助无限雪巧2采纳,获得10
32秒前
32秒前
34秒前
糖醋花孙米完成签到,获得积分10
36秒前
seminary发布了新的文献求助10
37秒前
hana应助瘦瘦友儿采纳,获得10
37秒前
冬东东发布了新的文献求助30
38秒前
Orange应助会飞的史迪奇采纳,获得10
38秒前
如意完成签到,获得积分10
38秒前
橙子完成签到 ,获得积分10
41秒前
科研通AI5应助正直的安南采纳,获得10
42秒前
43秒前
seminary完成签到,获得积分10
47秒前
晴雨完成签到,获得积分10
48秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944