亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive control of discrete-time nonlinear systems by recurrent neural networks in quasi-sliding mode like regime

控制理论(社会学) 控制器(灌溉) 李雅普诺夫函数 滑模控制 人工神经网络 循环神经网络 自适应控制 计算机科学 标识符 参数统计 趋同(经济学) 非线性系统 离散时间和连续时间 数学 控制(管理) 人工智能 统计 生物 量子力学 物理 经济增长 经济 程序设计语言 农学
作者
Iván Salgado,Cornelio Yáñez-Márquéz,Oscar Camacho-Nieto,Isaac Chaírez
出处
期刊:International Journal of Adaptive Control and Signal Processing [Wiley]
卷期号:31 (1): 83-96 被引量:9
标识
DOI:10.1002/acs.2685
摘要

Summary The aim of this study was to design an adaptive control strategy based on recurrent neural networks (RNNs). This neural network was designed to obtain a non‐parametric approximation (identification) of discrete‐time uncertain nonlinear systems. A discrete‐time Lyapunov candidate function was proposed to prove the convergence of the identification error. The adaptation laws to adjust the free parameters in the RNN were obtained in the same stability analysis. The control scheme used the states of the identifier, and it was developed fulfilling the necessary conditions to establish a behavior comparable with a quasi‐sliding mode regime. This controller does not use the regular form of the switching function that commonly appears in the sliding mode control designs. The Lyapunov candidate function to design the controller and the identifier simultaneously requires the existence of positive definite solutions of two different matrix inequalities. As consequence, a class of separation principle was proven when the RNN‐based identifier and the controller were designed by the same analysis. Simulations results were designed to show the behavior of the proposed controller solving the tracking problem for the trajectories of a direct current (DC) motor. The performance of the proposed controller was compared with the solution obtained when a classical proportional derivative controller and an adaptive first‐order sliding mode controller assuming poor knowledge of the plant. In both cases, the proposed controller showed superior performance when the relation between the tracking error convergence and the energy used to reach it was evaluated. Copyright © 2016 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
wsywsy123完成签到,获得积分20
5秒前
6秒前
LYL发布了新的文献求助10
9秒前
wsywsy123发布了新的文献求助10
11秒前
39秒前
粉刷酱发布了新的文献求助10
1分钟前
chenn完成签到 ,获得积分10
1分钟前
1分钟前
Chao123_完成签到,获得积分10
1分钟前
是谁还没睡完成签到 ,获得积分10
1分钟前
Barbarian完成签到,获得积分10
2分钟前
Walce完成签到,获得积分10
2分钟前
2分钟前
平常从蓉完成签到,获得积分0
2分钟前
3分钟前
ding应助qqq采纳,获得10
3分钟前
3分钟前
qqq发布了新的文献求助10
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
燨予完成签到,获得积分10
3分钟前
沐雨篱边完成签到 ,获得积分10
4分钟前
4分钟前
drughunter完成签到,获得积分10
4分钟前
5分钟前
黑球发布了新的文献求助10
5分钟前
5分钟前
penny完成签到,获得积分10
5分钟前
5分钟前
心心相印完成签到,获得积分10
5分钟前
bc完成签到,获得积分0
5分钟前
心心相印发布了新的文献求助10
5分钟前
penny发布了新的文献求助10
6分钟前
6分钟前
shin发布了新的文献求助10
6分钟前
充电宝应助shin采纳,获得10
6分钟前
胖小羊完成签到 ,获得积分10
6分钟前
郗妫完成签到,获得积分10
7分钟前
斯文败类应助penny采纳,获得10
7分钟前
赘婿应助科研通管家采纳,获得10
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788272
求助须知:如何正确求助?哪些是违规求助? 3333714
关于积分的说明 10263200
捐赠科研通 3049588
什么是DOI,文献DOI怎么找? 1673634
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511