A Versatile Self‐Templating Approach for Constructing Ternary Halide Perovskite Heterojunctions to Achieve Concurrent Enhancement in Photocatalytic CO2 Reduction Activity and Stability

材料科学 三元运算 卤化物 钙钛矿(结构) 光催化 异质结 纳米技术 复合数 光电子学 化学工程 无机化学 催化作用 复合材料 计算机科学 工程类 生物化学 化学 程序设计语言
作者
Meng‐Ran Zhang,You‐Xiang Feng,Zhaolei Liu,Ke Su,Su‐Xian Yuan,Min Zhang,Tong‐Bu Lu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:35 (22) 被引量:4
标识
DOI:10.1002/adfm.202423656
摘要

Abstract Metal halide perovskite (MHP)‐based photocatalysts encounter significant stability challenges in water‐containing systems, posing a major obstacle to their application in artificial photosynthesis. Herein, an innovative and universal strategy is present to create MHP‐based ternary heterojunctions based on a self‐templating method. A series of composite catalysts featuring sandwich hollow structures are constructed, with MHPs such as CsPbBr 3 , Cs 3 Bi 2 I 9 , Cs 3 Sb 2 Br 9 , and Cs 2 AgBiBr 6 serving as the intermediate layers. The unique sandwich structure effectively shields MHPs from direct water contact, allowing MHP‐based photocatalysts to exhibit exceptional stability in water‐containing photocatalytic environments for durations exceeding 200 h. Furthermore, the hollow design ensures complete contact between the reaction substrates with both the oxidation and reduction functional areas. Compared to single perovskite materials, MHP‐based ternary heterojunction photocatalysts exhibit stronger oxidation capability and improved charge separation efficiency, leading to a substantial enhancement in photocatalytic CO 2 reduction performance. Notably, the ternary heterojunction with CsPbBr 3 as the intermediate layer achieves an electron consumption rate of up to 1824 µmol g −1 h −1 for CO 2 reduction, which is far superior to other reported MHP‐based catalysts under similar conditions. This study provides a potent strategy for simultaneously enhancing the stability and activity of MHP‐based photocatalysts, paving the way for their potential applications in artificial photosynthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助科研通管家采纳,获得150
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
dl应助科研通管家采纳,获得150
1秒前
大个应助轻松的水之采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
雪王应助科研通管家采纳,获得150
1秒前
华仔应助科研通管家采纳,获得10
1秒前
ldz完成签到,获得积分10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
王路飞发布了新的文献求助10
1秒前
爆米花应助科研通管家采纳,获得200
1秒前
ding应助John采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
研友_qZA4Gn完成签到,获得积分10
2秒前
xiaochaoge应助科研通管家采纳,获得10
2秒前
2秒前
hui完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
友好钢笔发布了新的文献求助10
4秒前
想不想发布了新的文献求助10
4秒前
ollll完成签到,获得积分10
6秒前
HX发布了新的文献求助10
6秒前
7秒前
7秒前
友好钢笔完成签到,获得积分10
8秒前
Atoxus发布了新的文献求助10
8秒前
小鱼发布了新的文献求助10
8秒前
负责念梦完成签到,获得积分10
10秒前
哒哒哒发布了新的文献求助10
11秒前
现代的傻姑完成签到,获得积分20
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5166311
求助须知:如何正确求助?哪些是违规求助? 4358400
关于积分的说明 13570233
捐赠科研通 4204818
什么是DOI,文献DOI怎么找? 2306002
邀请新用户注册赠送积分活动 1305819
关于科研通互助平台的介绍 1252242