Comparing space-based to reported carbon monoxide emission estimates for Europe's iron and steel plants

一氧化碳 空格(标点符号) 环境科学 大气科学 一氧化碳 环境化学 化学 材料科学 冶金 物理 计算机科学 生物化学 催化作用 操作系统
作者
Gijs Leguijt,Joannes D. Maasakkers,Hugo Denier van der Gon,Arjo Segers,Tobias Borsdorff,Ivar R. van der Velde,Ilse Aben
出处
期刊:Atmospheric Chemistry and Physics [Copernicus Publications]
卷期号:25 (1): 555-574
标识
DOI:10.5194/acp-25-555-2025
摘要

Abstract. We use satellite observations of carbon monoxide (CO) to estimate CO emissions from European integrated iron and steel plants, the continent's highest-emitting CO point sources. We perform analytical inversions to estimate emissions from 21 individual plants using observations from the TROPOspheric Monitoring Instrument (TROPOMI) for 2019. As prior emissions, we use values reported by the facilities to the European Pollutant Release and Transfer Register (E-PRTR). These reported emissions vary in estimation methodology, including both measurements and calculations. With the Weather Research and Forecasting (WRF) model, we perform an ensemble of simulations with different transport settings to best replicate the observed emission plumes for each day and site. Comparing the inversion-based emission estimates to the E-PRTR reports, nine of the plants agree within uncertainties. For the remaining plants, we generally find lower emission rates than reported. Our posterior emission estimates are well constrained by the satellite observations (90 % of the plants have averaging kernel sensitivities above 0.7) except for a few low-emitting or coastal sites. We find agreement between our inversion results and emissions we estimate using the cross-sectional flux (CSF) method for the seven most strongly emitting plants, building further confidence in the inversion estimates. Finally, for four plants with large year-to-year variability in reported emission rates or large differences between the reported emission rate and our posterior estimate, we extend our analysis to 2020. We find no evidence in either the observed carbon monoxide concentrations or our inversion results for strong changes in emission rates. This demonstrates how satellites can be used to identify potential uncertainties in reported emissions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lycoris发布了新的文献求助10
刚刚
吃货发布了新的文献求助10
刚刚
茶颜发布了新的文献求助10
1秒前
Lucie发布了新的文献求助10
2秒前
Tracy发布了新的文献求助20
2秒前
小马甲应助liu采纳,获得10
2秒前
早睡同学完成签到,获得积分10
2秒前
翻斗花园小美关注了科研通微信公众号
2秒前
3秒前
Vaibhav发布了新的文献求助10
3秒前
naturehome发布了新的文献求助10
3秒前
遗憾完成签到,获得积分20
3秒前
万能图书馆应助优美紫槐采纳,获得10
4秒前
NexusExplorer应助小小旋风采纳,获得10
6秒前
遗憾发布了新的文献求助10
7秒前
DLY完成签到,获得积分20
7秒前
john_joestar完成签到,获得积分10
7秒前
慕青应助ballball233采纳,获得10
8秒前
研友_LjMY28完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助20
9秒前
hanhan发布了新的文献求助10
11秒前
12秒前
余初见完成签到,获得积分10
12秒前
婷婷婷完成签到 ,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
研友_VZG7GZ应助尼仲星采纳,获得10
14秒前
会思考的狐狸完成签到 ,获得积分10
14秒前
李健的小迷弟应助坏坏采纳,获得10
15秒前
Lycoris关注了科研通微信公众号
15秒前
15秒前
等等发布了新的文献求助10
16秒前
qc应助luckyday采纳,获得20
17秒前
17秒前
康康发布了新的文献求助30
19秒前
Lucas应助冰河的羊采纳,获得10
21秒前
温暖靖柏应助aaaa采纳,获得10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5722260
求助须知:如何正确求助?哪些是违规求助? 5269556
关于积分的说明 15296290
捐赠科研通 4871355
什么是DOI,文献DOI怎么找? 2615922
邀请新用户注册赠送积分活动 1565758
关于科研通互助平台的介绍 1522629