免疫系统
中性粒细胞胞外陷阱
抗原
免疫学
疫苗效力
生物安全
接种疫苗
医学
生物
微生物学
炎症
病理
作者
Litong Wang,Yitao Zhang,Jiaxin Huang,Sijie Wang,Shuhan Ji,Shenyu Wang,Miaoyuan Shi,Junlei Zhang,Yingying Shi,Zhenyu Luo,Zhaolei Jin,Xin‐Dong Jiang,Qingpo Li,Fuchun Yang,Jian You,Lihua Luo
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-01-10
标识
DOI:10.1021/acsnano.4c12203
摘要
Immunocompromised populations, including cancer patients, elderly individuals, and those with chronic diseases, are the primary targets of superbugs. Traditional vaccines are less effective due to insufficient or impaired immune cells. Inspired by the "vanguard" effect of neutrophils (NE) during natural infection, this project leverages the ability of NE to initiate the NETosis program to recruit monocytes and DC cells, designing vaccines that can rapidly recruit immune cells and enhance the immune response. The PLGA microsphere vaccine platform (MSV) with a high level of safety contains whole-bacterial antigens both internally and externally, providing initial and booster effects through programmed distribution and release of antigens after a single injection. Experimental data indicate that immunizing mice with a mixture of MSV and NE induces the formation of spontaneous gel-like neutrophil extracellular traps (NETs) at the inoculation site. These NETs recruit immune cells and prevent the diffusion of vaccine components, thereby reducing damage from bacterial toxins and enhancing vaccine biosafety. This strategy shows excellent efficacy against MRSA-induced infections in not only healthy but also immunocompromised mice.
科研通智能强力驱动
Strongly Powered by AbleSci AI