清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Performance of Lung Cancer Prediction Models for Screening-detected, Incidental, and Biopsied Pulmonary Nodules

医学 肺癌 肺癌筛查 接收机工作特性 放射科 结核(地质) 逻辑回归 肺孤立结节 活检 医学物理学 内科学 计算机断层摄影术 生物 古生物学
作者
Thomas Li,Kaiwen Xu,Aravind R. Krishnan,Riqiang Gao,Michael N. Kammer,Sanja Antic,David Xiao,Michael A. Knight,Yency Martinez,Rafael Paez,Robert J. Lentz,Stephen A. Deppen,Eric L. Grogan,Thomas A. Lasko,Kim L. Sandler,Fabien Maldonado,Bennett A. Landman
出处
期刊:Radiology [Radiological Society of North America]
被引量:1
标识
DOI:10.1148/ryai.230506
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To evaluate the performance of eight lung cancer prediction models on patient cohorts with screening-detected, incidentally-detected, and bronchoscopically-biopsied pulmonary nodules. Materials and Methods This study retrospectively evaluated promising predictive models for lung cancer prediction in three clinical settings: lung cancer screening with low-dose CT, incidentally, detected pulmonary nodules, and nodules deemed suspicious enough to warrant a biopsy. The area under the receiver operating characteristic curve (AUC) of eight validated models including logistic regressions on clinical variables and radiologist nodule characterizations, artificial intelligence (AI) on chest CTs, longitudinal imaging AI, and multimodal approaches for prediction of lung cancer risk was assessed in 9 cohorts ( n = 898, 896, 882, 219, 364, 117, 131, 115, 373) from multiple institutions. Each model was implemented from their published literature, and each cohort was curated from primary data sources collected over periods within 2002 to 2021. Results No single predictive model emerged as the highest-performing model across all cohorts, but certain models performed better in specific clinical contexts. Single timepoint chest CT AI performed well for screening-detected nodules but did not generalize well to other clinical settings. Longitudinal imaging and multimodal models demonstrated comparatively good performance on incidentally-detected nodules. When applied to biopsied nodules, all models showed low performance. Conclusion Eight lung cancer prediction models failed to generalize well across clinical settings and sites outside of their training distributions. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCI的芷蝶完成签到 ,获得积分10
11秒前
hhllhh完成签到,获得积分10
18秒前
马香芦完成签到,获得积分10
21秒前
眼睛大易文完成签到,获得积分20
32秒前
37秒前
jason完成签到 ,获得积分10
55秒前
yindi1991完成签到 ,获得积分10
58秒前
wushuimei完成签到 ,获得积分10
59秒前
orixero应助眼睛大易文采纳,获得10
1分钟前
tszjw168完成签到 ,获得积分10
1分钟前
注水萝卜完成签到 ,获得积分10
1分钟前
善学以致用应助古月采纳,获得30
1分钟前
丹妮完成签到 ,获得积分10
1分钟前
迈克老狼完成签到 ,获得积分10
1分钟前
1分钟前
谢陈完成签到 ,获得积分10
1分钟前
wu发布了新的文献求助10
1分钟前
小乙猪完成签到 ,获得积分0
1分钟前
胖胖橘完成签到 ,获得积分10
1分钟前
AiQi完成签到 ,获得积分10
1分钟前
悠明夜月完成签到 ,获得积分10
1分钟前
wu完成签到,获得积分20
1分钟前
科研通AI5应助wu采纳,获得30
1分钟前
Grey完成签到 ,获得积分10
1分钟前
1分钟前
古月发布了新的文献求助30
1分钟前
hebhm完成签到,获得积分10
1分钟前
迅速的幻雪完成签到 ,获得积分10
1分钟前
fay1987完成签到,获得积分10
1分钟前
danli完成签到 ,获得积分10
2分钟前
活力的珊完成签到 ,获得积分10
2分钟前
啦啦啦啦完成签到 ,获得积分10
2分钟前
淞淞于我完成签到 ,获得积分10
2分钟前
Andy完成签到 ,获得积分10
2分钟前
碗碗豆喵完成签到 ,获得积分10
2分钟前
HR112完成签到 ,获得积分10
2分钟前
Dongjie完成签到,获得积分10
2分钟前
安详的曲奇完成签到,获得积分10
2分钟前
大方的笑萍完成签到 ,获得积分10
3分钟前
乐正怡完成签到 ,获得积分0
3分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804223
求助须知:如何正确求助?哪些是违规求助? 3349045
关于积分的说明 10341204
捐赠科研通 3065188
什么是DOI,文献DOI怎么找? 1682974
邀请新用户注册赠送积分活动 808571
科研通“疑难数据库(出版商)”最低求助积分说明 764600