Bidentate Lewis Base Ligand-Mediated Surface Stabilization and Modulation of the Electronic Structure of CsPbBr3 Perovskite Nanocrystals

化学 钙钛矿(结构) 纳米晶 齿合度 配体(生物化学) 调制(音乐) 晶体结构 结晶学 纳米技术 受体 生物化学 美学 哲学 材料科学
作者
Md. Samim Hassan,Pooja Basera,Bilawal Khan,Arsenii S. Portniagin,Kunnathodi Vighnesh,Ye Wu,Даниил А. Русанов,Maria V. Babak,Jr‐Hau He,Michal Bajdich,Andrey L. Rogach
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (1): 862-873 被引量:2
标识
DOI:10.1021/jacs.4c13724
摘要

The desorption of conventional ligands from the surface of halide perovskite nanocrystals (NCs) often causes their structural instability and deterioration of the optoelectronic properties. To address this challenge, we present an approach of using a bidentate Lewis base ligand, namely, 1,4-bis(diphenylphosphino)butane (DBPP), for the synthesis of CsPbBr3 NCs. The phosphine group of DBPP has a strong interaction with the PbBr2 precursor, forming a highly crystalline intermediate complex during the reaction. In the presence of oleic acid, the uncoordinated phosphine group of DBPP is converted into the phosphonium cation, which strongly binds to the surface bromide of the formed CsPbBr3 NCs through hydrogen bonding. Density functional theory calculations suggest that DBPP can strongly bind to the undercoordinated lead and surface bromide ions of CsPbBr3 NCs through its unprotonated and protonated phosphine groups, respectively. The robust binding of DBPP to the surface of perovskite NCs helps to preserve their structural integrity under various environmental stresses. Moreover, the electron density and energy levels are regulated in DBPP-capped CsPbBr3 NCs by the donation of electrons from the ligands to the NCs, resulting in their improved photocatalytic CO2 reduction performance. Our study highlights the potential of using bidentate ligands to stabilize the surface of perovskite NCs and modulate their optical and electronic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangshasha关注了科研通微信公众号
刚刚
1秒前
王春起发布了新的文献求助30
1秒前
研友_850EYZ发布了新的文献求助20
1秒前
2秒前
2秒前
3秒前
小马甲应助琳科研_文献采纳,获得10
3秒前
任侠传发布了新的文献求助10
3秒前
风中成风发布了新的文献求助10
3秒前
MHCL完成签到 ,获得积分10
4秒前
4秒前
爆米花应助舒展采纳,获得10
5秒前
愉快草莓发布了新的文献求助10
6秒前
pink完成签到,获得积分10
6秒前
小米粥发布了新的文献求助10
6秒前
汉堡包应助小何HUHU采纳,获得10
6秒前
6秒前
8秒前
小白应助活力的秋莲采纳,获得20
8秒前
紧张的毛衣完成签到,获得积分10
9秒前
Amber发布了新的文献求助10
9秒前
9秒前
黄小二完成签到 ,获得积分10
9秒前
Dou_Xiaowen发布了新的文献求助10
10秒前
爆米花应助气味采纳,获得10
12秒前
12秒前
田様应助jarky采纳,获得30
12秒前
十三应助qimiao66668采纳,获得10
13秒前
nini发布了新的文献求助10
13秒前
chengyulin发布了新的文献求助10
14秒前
14秒前
任侠传完成签到,获得积分10
14秒前
领导范儿应助李生采纳,获得10
14秒前
打打应助紧张的毛衣采纳,获得10
14秒前
科研通AI5应助hesu采纳,获得10
16秒前
Amber完成签到,获得积分20
16秒前
破坏王完成签到,获得积分10
16秒前
子凡完成签到 ,获得积分10
16秒前
陆人甲发布了新的文献求助10
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805070
求助须知:如何正确求助?哪些是违规求助? 3350197
关于积分的说明 10347558
捐赠科研通 3066017
什么是DOI,文献DOI怎么找? 1683448
邀请新用户注册赠送积分活动 809021
科研通“疑难数据库(出版商)”最低求助积分说明 765153