Solvent Exchange-Induced Microphase Separation and Structural Arrest to Form Glassy Hydrogels

自愈水凝胶 溶剂 高分子化学 材料科学 化学工程 化学 高分子科学 有机化学 工程类
作者
Jia Yu Hu,Li Hou,A. Zhu,Hao Qiu,Zhen-Guo Zhang,Cong Du,Kunpeng Cui,Qiang Zheng,Zi Liang Wu
出处
期刊:Macromolecules [American Chemical Society]
被引量:2
标识
DOI:10.1021/acs.macromol.4c01758
摘要

Glassy hydrogels with high stiffness and toughness have been developed in recent years by forming dense associative interactions in a gel matrix. There are several reports on forming robust hydrophobic associations with microphase separation during the solvent exchange process to convert elastic organogels to glassy hydrogels. However, the microstructure formation during the solvent exchange process and the mechanism accounting for rubbery-to-glassy transition of the gels remain unclear. In this study, we copolymerize hydrophobic ethylene glycol phenyl ether acrylate and hydrophilic methacrylic acid in dimethyl sulfoxide, followed by solvent exchange with water to form glassy hydrogels with microphase-separated structures. Ultrasmall- and small-angle X-ray scattering measurements are performed on the gel during the solvent exchange process at various temperatures, and structural parameters are ascertained to trace the structural evolution of the gel. A two-stage structural formation mechanism is proposed for the varying microstructure and properties of the gel during the solvent exchange process. At the initial stage, segregation of hydrophobic segments leads to microphase separation that creates a bicontinuous structure with a high-viscosity polymer-rich phase. At the late stage, the polymer-rich phase becomes vitrified, which arrests the microphase separation and produces a glassy hydrogel far from the thermodynamic equilibrium state. The metastability nature of glassy gel can be harnessed to mediate the microstructure and properties by hydrothermal treatment to reactivate the phase separation. This study provides insights into the interaction between microphase separation and vitrification that determines the structure and properties of glassy gels, which will merit the design of high-performance soft materials with phase-separated structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小李攻攻发布了新的文献求助10
刚刚
einspringen发布了新的文献求助10
刚刚
唐海蓉完成签到 ,获得积分10
1秒前
cwqcqw发布了新的文献求助10
2秒前
2秒前
天天快乐应助111采纳,获得10
2秒前
2秒前
彭于晏应助食化狂徒采纳,获得10
2秒前
3秒前
淘朕朕发布了新的文献求助30
3秒前
chr完成签到 ,获得积分10
4秒前
6秒前
7秒前
洁净的香之完成签到,获得积分10
7秒前
8秒前
lll发布了新的文献求助10
8秒前
8秒前
玩命的化蛹完成签到,获得积分10
10秒前
李健的小迷弟应助水杨酸采纳,获得10
11秒前
艺阳发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
CAOHOU应助康园采纳,获得10
13秒前
郭1994发布了新的文献求助10
13秒前
111发布了新的文献求助10
14秒前
16秒前
酷波er应助wrong采纳,获得10
16秒前
jiajiajai完成签到,获得积分10
16秒前
17秒前
蒲云海发布了新的文献求助100
17秒前
一碗冷的粥发布了新的文献求助100
19秒前
20秒前
20秒前
Lucas应助自由的馒头采纳,获得10
20秒前
21秒前
xzy998应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
柯亦云应助科研通管家采纳,获得20
21秒前
林德洵应助科研通管家采纳,获得20
21秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4056230
求助须知:如何正确求助?哪些是违规求助? 3594329
关于积分的说明 11419977
捐赠科研通 3320180
什么是DOI,文献DOI怎么找? 1825613
邀请新用户注册赠送积分活动 896656
科研通“疑难数据库(出版商)”最低求助积分说明 817971