A lightweight MHDI-DETR model for detecting grape leaf diseases

计算机科学 葡萄 生物 植物
作者
Zilong Fu,Lifeng Yin,Can Cui,Yi Wang
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fpls.2024.1499911
摘要

Accurate diagnosis of grape leaf diseases is critical in agricultural production, yet existing detection techniques face challenges in achieving model lightweighting while ensuring high accuracy. In this study, a real-time, end-to-end, lightweight grape leaf disease detection model, MHDI-DETR, based on an improved RT-DETR architecture, is presented to address these challenges. The original residual backbone network was improved using the MobileNetv4 network, significantly reducing the model's computational requirements and complexity. Additionally, a lightSFPN feature fusion structure is presented, combining the Hierarchical Scale Feature Pyramid Network with the Dilated Reparam Block structure design from the UniRepLKNet network. This structure is designed to overcome the challenges of capturing complex high-level and subtle low-level features, and it uses Efficient Local Attention to focus more efficiently on regions of interest, thereby enhancing the model's ability to detect complex targets while improving accuracy and inference speed. Finally, the integration of GIou and Focaler-IoU into Focaler-GIoU enhances detection accuracy and convergence speed for small targets by focusing more effectively on both simple and difficult samples. The findings from the experiments suggest that The MHDI-DETR model results in a 56% decrease in parameters and a 49% reduction in floating-point operations, respectively, compared with the RT-DETR model, in terms of accuracy, the model achieved precision rates of 96.9%, 92.6%, and 72.5% for accuracy, mAP50, and mAP50:95, respectively. Compared with the RT-DETR model, these represent improvements of 1.9%, 1.2%, and 1.2%. Overall, the MHDI-DETR model surpasses the RT-DETR and other mainstream detection models in both detection accuracy and degree of lightness, achieving dual optimization in efficiency and accuracy, and providing an efficient technical solution for automated agricultural disease management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺风顺水顺财神完成签到,获得积分10
刚刚
奋斗蜗牛完成签到,获得积分10
刚刚
沄霄之上完成签到,获得积分10
1秒前
繁华完成签到,获得积分10
1秒前
max完成签到,获得积分10
1秒前
Matrix完成签到,获得积分10
1秒前
戚薇发布了新的文献求助10
1秒前
1秒前
小猪猪饲养员完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
Taiko完成签到,获得积分10
3秒前
奥特超曼应助月亮上的猫采纳,获得10
3秒前
打打应助冰糕采纳,获得10
3秒前
天天快乐应助SYY采纳,获得10
4秒前
Shawn完成签到,获得积分10
4秒前
4秒前
4秒前
渐入佳境完成签到,获得积分10
5秒前
哇wwwww完成签到,获得积分10
5秒前
小螃蟹完成签到 ,获得积分10
5秒前
000完成签到,获得积分20
5秒前
CodeCraft应助白衣轻叹采纳,获得10
5秒前
杜七七发布了新的文献求助10
5秒前
AH完成签到,获得积分20
6秒前
6秒前
aq发布了新的文献求助10
6秒前
6秒前
肖守玉完成签到,获得积分10
6秒前
邓佳鑫Alan发布了新的文献求助10
6秒前
7秒前
岗岗发布了新的文献求助10
7秒前
不安红豆完成签到,获得积分10
7秒前
appa发布了新的文献求助10
7秒前
8秒前
木心应助风清扬采纳,获得50
8秒前
吴一一发布了新的文献求助10
8秒前
9秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582