亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Risk score stratification of cutaneous melanoma patients based on whole slide images analysis by deep learning

医学 队列 一致性 危险分层 黑色素瘤 内科学 肿瘤科 列线图 人工智能 多元分析 癌症研究 计算机科学
作者
Céline Bossard,Yahia Salhi,Amir Khammari,Maud Brousseau,Y. Le Corre,Sanae Salhi,G. Quéreux,Jérôme Chetritt
出处
标识
DOI:10.1111/jdv.20538
摘要

Abstract Background There is a need to improve risk stratification of primary cutaneous melanomas to better guide adjuvant therapy. Taking into account that haematoxylin and eosin (HE)‐stained tumour tissue contains a huge amount of clinically unexploited morphological informations, we developed a weakly‐supervised deep‐learning approach, SmartProg‐MEL, to predict survival outcomes in stages I to III melanoma patients from HE‐stained whole slide image (WSI). Methods We designed a deep neural network that extracts morphological features from WSI to predict 5‐y overall survival (OS), and assign a survival risk score to each patient. The model was trained and validated on a discovery cohort of primary cutaneous melanomas (IHP‐MEL‐1, n = 342). Performance was tested on two external and independent datasets (IHP‐MEL‐2, n = 161; and TCGA cohort n = 63). It was compared with well‐established prognostic factors. Concordance index (c‐index) was used as a metric. Results On the discovery cohort, the SmartProg‐MEL predicts the 5‐y OS with a c‐index of 0.78 on the cross‐validation data and of 0.72 on the cross‐testing series. In the external cohorts, the model achieved a c‐index of 0.71 and 0.69 for the IHP‐MEL‐2 and TCGA dataset respectively. Furthermore, SmartProg‐MEL was an independent and the most powerful prognostic factor in multivariate analysis (HR = 1.84, p ‐value < 0.005). Finally, the model was able to dichotomize patients in two groups—a low and a high‐risk group—each associated with a significantly different 5‐y OS ( p ‐value < 0.001 for IHP‐MEL‐1 and p ‐value = 0.01 for IHP‐MEL‐2). Conclusion The performance of our fully automated SmartProg‐MEL model outperforms the current clinicopathological factors in terms of prediction of 5‐y OS and risk stratification of cutaneous melanoma patients. Incorporation of SmartProg‐MEL in the clinical workflow could guide the decision‐making process by improving the identification of patients that may benefit from adjuvant therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
堪冷之发布了新的文献求助10
11秒前
14秒前
19秒前
Dravia发布了新的文献求助10
23秒前
29秒前
fuiee完成签到,获得积分10
46秒前
Acid完成签到 ,获得积分10
46秒前
53秒前
我是老大应助QQ采纳,获得30
59秒前
1分钟前
NexusExplorer应助堪冷之采纳,获得30
1分钟前
不辣的完成签到 ,获得积分10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
张乙一发布了新的文献求助10
1分钟前
1分钟前
123完成签到 ,获得积分10
1分钟前
张乙一发布了新的文献求助10
1分钟前
风中黎昕完成签到 ,获得积分10
1分钟前
AiHaraNeko完成签到,获得积分10
1分钟前
2分钟前
bing完成签到 ,获得积分10
2分钟前
Lucas应助袋鼠采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
星星发布了新的文献求助10
3分钟前
皮皮虾发布了新的文献求助10
3分钟前
3分钟前
研友_VZG7GZ应助星星采纳,获得10
3分钟前
zheng2001完成签到,获得积分10
3分钟前
zheng2001发布了新的文献求助10
3分钟前
科研搬运工完成签到,获得积分0
3分钟前
CipherSage应助张乙一采纳,获得10
3分钟前
要减肥冰菱完成签到 ,获得积分10
3分钟前
3分钟前
袋鼠发布了新的文献求助10
4分钟前
jim完成签到 ,获得积分10
4分钟前
jack完成签到 ,获得积分10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3922068
求助须知:如何正确求助?哪些是违规求助? 3466826
关于积分的说明 10945428
捐赠科研通 3195739
什么是DOI,文献DOI怎么找? 1765827
邀请新用户注册赠送积分活动 855756
科研通“疑难数据库(出版商)”最低求助积分说明 795077