Stable Cox regression for survival analysis under distribution shifts

比例危险模型 分布(数学) 回归分析 回归 统计 生存分析 数学 数学分析
作者
Shaohua Fan,Renzhe Xu,Qian Dong,Yue He,Cheng Chang,Peng Cui
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
标识
DOI:10.1038/s42256-024-00932-5
摘要

Survival analysis aims to estimate the impact of covariates on the expected time until an event occurs, which is broadly utilized in disciplines such as life sciences and healthcare, substantially influencing decision-making and improving survival outcomes. Existing methods, usually assuming similar training and testing distributions, nevertheless face challenges with real-world varying data sources, creating unpredictable shifts that undermine their reliability. This urgently necessitates that survival analysis methods should utilize stable features across diverse cohorts for predictions, rather than relying on spurious correlations. To this end, we propose a stable Cox model with theoretical guarantees to identify stable variables, which jointly optimizes an independence-driven sample reweighting module and a weighted Cox regression model. Through extensive evaluation on simulated and real-world omics and clinical data, stable Cox not only shows strong generalization ability across diverse independent test sets but also stratifies the subtype of patients significantly with the identified biomarker panels. Survival prediction models used in healthcare usually assume that training and test data share a similar distribution, which is not true in real-world settings. Cui and colleagues develop a stable Cox regression model that can identify stable variables for predicting survival outcomes under distribution shifts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙飞凤舞完成签到,获得积分10
1秒前
1秒前
2秒前
香蕉觅云应助寄草采纳,获得30
2秒前
kellyzzm完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
小俊完成签到,获得积分10
5秒前
打打应助mewmew采纳,获得30
6秒前
6秒前
qiqi完成签到,获得积分10
7秒前
7秒前
风趣依瑶完成签到 ,获得积分10
8秒前
顾文强发布了新的文献求助10
10秒前
11秒前
chen发布了新的文献求助10
11秒前
12秒前
李晓航发布了新的文献求助10
12秒前
12秒前
13秒前
矜天完成签到 ,获得积分10
15秒前
NN完成签到,获得积分10
15秒前
yy完成签到,获得积分10
17秒前
友好半邪发布了新的文献求助30
17秒前
斯奈克发布了新的文献求助10
17秒前
yyy完成签到,获得积分10
17秒前
pcr163应助菠菜采纳,获得100
18秒前
大模型应助Vivian采纳,获得10
18秒前
英俊的铭应助阳光的衫采纳,获得10
19秒前
19秒前
邹米文完成签到,获得积分10
19秒前
依灵完成签到,获得积分10
20秒前
zhangxin完成签到,获得积分10
20秒前
无花果应助李晓航采纳,获得10
21秒前
快乐滑板应助Liy采纳,获得10
21秒前
23秒前
bkagyin应助西子阳采纳,获得10
23秒前
我是鸡汤完成签到,获得积分10
23秒前
清脆的书桃完成签到,获得积分10
24秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Happiness in the Nordic World 500
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Drug distribution in mammals 500
Single Element Semiconductors: Properties and Devices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3858567
求助须知:如何正确求助?哪些是违规求助? 3400754
关于积分的说明 10620259
捐赠科研通 3123507
什么是DOI,文献DOI怎么找? 1721942
邀请新用户注册赠送积分活动 829398
科研通“疑难数据库(出版商)”最低求助积分说明 778178