已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Hybrid Approach of Buongiorno's Law and Darcy–Forchheimer Theory Using Artificial Neural Networks: Modeling Convective Transport in Al2O3‐EO Mono‐Nanofluid Around a Riga Wedge in Porous Medium

人工神经网络 对流 物理 机械 计算机科学 人工智能
作者
Anum Shafiq,Andaç Batur Çolak,Tabassum Naz Sindhu
出处
期刊:International Journal for Numerical Methods in Fluids [Wiley]
被引量:5
标识
DOI:10.1002/fld.5348
摘要

ABSTRACT The inspiration for this study originates from a recognized research gap within the broader collection of studies on nanofluids, with a specific focus on their interactions with different surfaces and boundary conditions (BCs). The primary purpose of this research is to use an artificial neural network to examine the combination of Alumina‐Engine oil‐based nanofluid flow subject to electro‐magnetohydrodynamic effects, within a porous medium, and over a stretching surface with an impermeable structure under convective BCs. The flow model incorporates Thermophoresis and Brownian motion directly from Buongiorno's model. Accounting for the porous medium's effect, the model integrates the Forchheimer number (depicting local inertia) and the porosity factor developed in response to the presence of the porous medium. The conversion of governing equations into non‐linear ordinary differential systems is achieved by implementing transformations. A highly non‐linear ordinary differential system's final system is solved using a numerical scheme (Runge–Kutta fourth‐order). Findings indicate that the porosity factor positively impacts the skin friction and the momentum boundary layer. The influence suggests an increment in the frictional force and a decline in the velocity profile. The volume fraction, Prandtl number, and magnetic number significantly impact the flow profiles. The skin friction data is tabulated with some physical justifications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuhowlong发布了新的文献求助10
刚刚
yzx发布了新的文献求助10
刚刚
老吉关注了科研通微信公众号
刚刚
科研通AI5应助火星上念梦采纳,获得10
5秒前
5秒前
朴实子骞完成签到 ,获得积分10
6秒前
Akim应助huohuo采纳,获得10
7秒前
甘宁完成签到,获得积分10
7秒前
8秒前
桐桐应助峡星牙采纳,获得30
8秒前
张嘉芸发布了新的文献求助60
9秒前
CipherSage应助Cici采纳,获得10
9秒前
思源应助leo采纳,获得10
9秒前
12秒前
情怀应助互助遵法尚德采纳,获得10
13秒前
16秒前
SAY完成签到,获得积分10
17秒前
17秒前
wab完成签到,获得积分0
20秒前
浮游应助mklwxhlsd采纳,获得10
20秒前
22秒前
zhuuu发布了新的文献求助10
23秒前
xx完成签到 ,获得积分10
24秒前
科研通AI5应助似水流年采纳,获得10
25秒前
25秒前
wusj120完成签到,获得积分10
27秒前
英姑应助不喜采纳,获得10
27秒前
27秒前
27秒前
从容的笑天完成签到,获得积分10
28秒前
甘宁发布了新的文献求助10
29秒前
zy完成签到,获得积分10
30秒前
李健应助佳jia采纳,获得10
31秒前
果儿发布了新的文献求助10
31秒前
852应助机灵的嘉熙采纳,获得10
32秒前
35秒前
35秒前
36秒前
不喜完成签到,获得积分10
37秒前
轻松听双完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Effects of different anesthesia methods on bleeding and prognosis in endoscopic sinus surgery: a meta-analysis and systematic review of randomized controlled trials 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4843776
求助须知:如何正确求助?哪些是违规求助? 4144513
关于积分的说明 12832770
捐赠科研通 3890848
什么是DOI,文献DOI怎么找? 2138848
邀请新用户注册赠送积分活动 1158973
关于科研通互助平台的介绍 1059003