Study on the Mechanism of Alpinia officinarum Hance in the Improvement of Insulin Resistance through Network Pharmacology, Molecular Dockingand in vitro Experimental Verification

药理学 胰岛素抵抗 化学 胰岛素受体 活性氧 生物 生物化学 胰岛素 内分泌学
作者
Mingyan Zhou,Xiuxia Lian,Xuguang Zhang,Jian Xu,Junqing Zhang
出处
期刊:Current Computer - Aided Drug Design [Bentham Science]
卷期号:21
标识
DOI:10.2174/0115734099325919241025023026
摘要

Background: Research has elucidated that the pathophysiological underpinnings of non-alcoholic fatty liver disease and type 2 diabetes mellitus are intrinsically linked to insulin resistance (IR). However, there are currently no pharmacotherapies specifically approved for combating IR. Although Alpinia officinarum Hance (A. officinarum) can ameliorate diabetes, the detailed molecular mechanism through which it influences IR has not been fully clarified. Aims: To predict the active components of A. officinarum and determine the mechanism by which A. officinarum affects IR. Methods: The active compounds and molecular mechanism underlying the improvement of IR by A. officinarum were predicted via network pharmacology and molecular docking. To further substantiate these predictions, an in vitro model of IR was induced in HepG2 cells using high glucose concentrations. Cytotoxicity and oxidative stress levels were evaluated using Cell Counting Kit-8, reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) assay kits. The putative molecular mechanisms were corroborated through Western blot and RT-PCR analyses. Results: Fourteen principal active components in A. officinarum, 133 potential anti-IR gene targets, and the top five targets with degree values were ALB, AKT1, TNF, IL6, and VEGFA. A. officinarum was posited to exert its pharmacological effects on IR through mechanisms involving lipid and atherosclerosis, the AGE-RAGE signaling pathway in diabetic complications, the PI3K-AKT signaling pathway, fluid shear stress, and atherosclerosis. Intriguingly, network pharmacology analysis highlighted (4E)-7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3- one (A14) as the most active compound. Molecular docking studies further confirmed that A14 has a strong binding affinity for the main targets of PI3K, AKT, and Nrf2. The experiments demonstrated that A14 significantly diminished the ROS and MDA levels while augmenting the SOD activity. Moreover, A14 was found to elevate the protein expression of PI3K, AKT, Nrf2, and HO-1, and increase the mRNA levels of these targets as well as NQO1. Conclusion: A. officinarum could play a therapeutic role in IR through multiple components, targets, and pathways. The most active component of A. officinarum responsible for combating IR is A14, which has the ability to regulate oxidative stress in IR-HepG2 cells by activating the PI3K/AKT/Nrf2 pathway. These findings suggest a potential pharmacological intervention strategy for the treatment of IR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助blossom采纳,获得10
1秒前
高有财发布了新的文献求助10
1秒前
Eason小川发布了新的文献求助10
1秒前
hhchhcmxhf完成签到,获得积分10
1秒前
2秒前
CodeCraft应助王舒心采纳,获得10
2秒前
2秒前
欣喜的雪青完成签到 ,获得积分10
3秒前
cciocio完成签到,获得积分10
3秒前
Anthony发布了新的文献求助10
4秒前
4秒前
5秒前
等待的盼波完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
itsdatou完成签到,获得积分10
7秒前
菠萝冰发布了新的文献求助10
7秒前
8秒前
8秒前
随梦而飞发布了新的文献求助10
8秒前
孤独的匕发布了新的文献求助10
9秒前
th关闭了th文献求助
10秒前
去码头整点薯条完成签到,获得积分20
10秒前
11秒前
11秒前
12秒前
晴天发布了新的文献求助20
12秒前
王焕玉发布了新的文献求助10
13秒前
Hello应助super采纳,获得10
13秒前
隐形峻熙发布了新的文献求助10
13秒前
13秒前
doin发布了新的文献求助10
13秒前
大模型应助ZZC采纳,获得10
14秒前
蛋黄酥酥应助Yinqueen采纳,获得30
14秒前
情怀应助去码头整点薯条采纳,获得10
14秒前
的法国队完成签到,获得积分10
15秒前
李健的粉丝团团长应助yr采纳,获得10
15秒前
luckydong完成签到 ,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630558
求助须知:如何正确求助?哪些是违规求助? 4722782
关于积分的说明 14973964
捐赠科研通 4788646
什么是DOI,文献DOI怎么找? 2557108
邀请新用户注册赠送积分活动 1517960
关于科研通互助平台的介绍 1478597