Machine learning based sucker rod pump fault diagnosis using motor power curve

抽油杆 断层(地质) 功率(物理) 计算机科学 控制理论(社会学) 人工智能 控制工程 工程类 机械工程 物理 地质学 量子力学 地震学 控制(管理)
作者
Othman Ahmed,Samuel Isaac Tecle,Anatoliy Zyuzev,Владимир Павлович Метельков
出处
期刊:Известия Томского политехнического университета [National Research Tomsk Polytechnic University]
卷期号:336 (1): 36-49
标识
DOI:10.18799/24131830/2025/1/4610
摘要

Relevance. The complexity of monitoring and diagnosing the condition of underground structural elements of sucker rod pumping units and large economic losses when operating this equipment with defects not identified in a timely manner. Aim. Development of methods for detecting faults in a sucker rod pump that do not require the involvement of highly qualified personnel for diagnosis, using information that is easily available on the surface. Methods. Machine learning methods (Decision tree method, K-nearest neighbors method, Support vector machine, Naive Bayes classifier) using motor power curves. Results and conclusions. The paper demonstrates the possibility of detecting faults in a sucker rod pump based on machine learning methods. The study was carried out on the basis of a developed simulation model of a sucker rod pump, used to reproduce motor power curves, taking into account the impact of the features of various equipment operation scenarios. Being the fundamental energy source for the oil production, motor power is directly related to the real-time operating condition of the oil well, and the motor power curve is a reliable source with the ability to increase the efficiency of sucker rod pump diagnostic. To train the machine learning classifiers and evaluate their performance accuracy, a number of characteristics were used, obtained from motor power curves for six different pump operating states. Namely, operating coefficients were calculated, representing the ratio of the power integral at each of the four stages of the installation operating cycle to the power integral for the entire cycle. The results show that the considered approach allows for high accuracy in diagnosing the operating conditions of a sucker rod pump. The classifier based on the decision tree method showed the highest efficiency among the four studied classifiers in identifying all six types of faults (95.8%), and the support vector machine method showed as well very high efficiency (90.3%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酒吧舞男茜茜妈完成签到 ,获得积分10
刚刚
jenningseastera应助Artorias采纳,获得10
刚刚
seine完成签到 ,获得积分10
1秒前
lyp完成签到 ,获得积分10
3秒前
7秒前
ss应助千阳采纳,获得10
7秒前
叶映安发布了新的文献求助10
8秒前
平常的凡之完成签到,获得积分10
11秒前
wlei完成签到,获得积分10
15秒前
冯哥侃大山完成签到 ,获得积分10
16秒前
花样年华完成签到,获得积分0
19秒前
xzy998发布了新的文献求助10
20秒前
pluto应助阳光的紫丝采纳,获得20
20秒前
Xiaoxiannv完成签到,获得积分10
21秒前
22秒前
jenningseastera应助Raymond采纳,获得10
23秒前
脑洞疼应助猪猪hero采纳,获得10
25秒前
王战辉完成签到,获得积分20
25秒前
27秒前
28秒前
渠安完成签到 ,获得积分10
28秒前
天天快乐应助ghifi37采纳,获得10
37秒前
sunny完成签到 ,获得积分10
40秒前
D515完成签到,获得积分10
46秒前
土豆完成签到,获得积分10
47秒前
47秒前
朴实以松完成签到,获得积分10
49秒前
ZYN完成签到,获得积分10
49秒前
林间完成签到 ,获得积分10
49秒前
科研通AI5应助ding采纳,获得10
51秒前
建丰完成签到,获得积分10
52秒前
54秒前
pluto应助B1n采纳,获得20
54秒前
56秒前
李健发布了新的文献求助10
57秒前
59秒前
金皮卡完成签到,获得积分10
1分钟前
1分钟前
jenningseastera应助Raymond采纳,获得10
1分钟前
霍师傅发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778731
求助须知:如何正确求助?哪些是违规求助? 3324277
关于积分的说明 10217710
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798531
科研通“疑难数据库(出版商)”最低求助积分说明 758401