Segmentation of skin layers in ultrasound images using a crowdsourcing and deep learning-based system

众包 分割 人工智能 计算机科学 深度学习 图像分割 计算机视觉 超声波 万维网 放射科 医学
作者
Maira Beatriz Hernández Morán,Larissa Oliveira,Marcelo Daniel Brito Faria,Luciana Freitas Bastos,Gilson A. Giraldi,Clarissa Canella,Aura Conci
标识
DOI:10.1109/aiccsa59173.2023.10479265
摘要

Ultrasonography (US) has demonstrated many advantages in the detection, characterization, and monitoring of different diseases. Through high frequency probes, it is possible to visualize and characterize the anatomical layers, such as tissues, which can constitute a very helpful supporting tool in several procedures, e.g., surgeries. However, the visual identification of tissues in this type of image is still a challenge for some professionals. In this work, we evaluate deep learning (DL) segmentation algorithms for the tissue segmentation task in US. Moreover, we briefly assess whether their performance can be improved by including a crowdsourcing step. In order to perform the segmentation task, different segmentation models are trained, as posteriorly, the crowdsourcing step is included. The proposed approach is composed of the following steps: 1 - automatic segmentation using a deep learning algorithm; 2 - crowd evaluation and correction of the results. In order to perform step 1, different segmentation models are trained. The second step includes a visual interface where users can: a) validate the quality of the automatic segmentation; or b) correct the segmentation whether the DL result is inconsistent. All users are scored, denoting the quality of their annotations, considering the manual annotations provided by an expert for a small group of images. In order to evaluate the method and compare it to a DL algorithms alone, a total of 100 US images were used. Our experiments show that the inclusion of crowdsourcing significantly improved the performance of the tissue segmentation task compared to using the DL models alone. The performance of our method demonstrated the feasibility of applying this type of solution for the considered problem of segmenting tissues in US facial images. Moreover, the results suggest that this tool can be employed as an auxiliary tool in oral procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
灵巧的以亦完成签到,获得积分10
2秒前
2秒前
zhuo完成签到,获得积分10
3秒前
3秒前
你们才来完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
lulu发布了新的文献求助20
5秒前
lalala发布了新的文献求助10
5秒前
6秒前
时尚的诗珊完成签到 ,获得积分10
6秒前
8秒前
8秒前
贪玩凤凰发布了新的文献求助10
9秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
leaolf应助科研通管家采纳,获得50
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
化工兔应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
化工兔应助科研通管家采纳,获得10
11秒前
leaolf应助科研通管家采纳,获得50
11秒前
BareBear应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
LaTeXer应助科研通管家采纳,获得100
11秒前
大模型应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
化工兔应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
LaTeXer应助科研通管家采纳,获得100
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920224
求助须知:如何正确求助?哪些是违规求助? 4191872
关于积分的说明 13019652
捐赠科研通 3962608
什么是DOI,文献DOI怎么找? 2172148
邀请新用户注册赠送积分活动 1190024
关于科研通互助平台的介绍 1098834