Fe-Doped CoS2 Nanocages as Bifunctional Electrocatalysts for Water Splitting

纳米笼 双功能 分解水 兴奋剂 材料科学 结晶学 纳米技术 化学 光电子学 催化作用 生物化学 光催化
作者
Bo Fang,Yue Li,Jiaqi Yang,Ting Lu,Xinjuan Liu,Xiaohong Chen,Likun Pan,Zhenjie Zhao
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (8): 9685-9695 被引量:12
标识
DOI:10.1021/acsanm.4c01449
摘要

Currently, electrochemical water-splitting activity is limited by the slow intrinsic reaction kinetics and energy conversion efficiency, so designing highly efficient electrocatalysts that can facilitate electrochemical reactions remains necessary. Herein, the catalyst architecture consisting of Fe-doped CoS2 nanocages with nitrogen-doped carbon wrapping (CN/Fe-CoS2) was explored as an outstanding bifunctional electrocatalyst. Through density functional theory calculations, the introduction of Fe into CoS2 would modulate the density of states, making the reduced band gap and enhanced intrinsic charge transfer efficiency of CoS2. Simultaneously, the adsorption of intermediates during the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) processes is regulated, leading to an improvement in the intrinsic catalytic activity. The experimental results demonstrate that Fe doping significantly enhances the electron transfer, specific surface area, and electrochemical active area of CoS2, which facilitates the efficient utilization of charge and exposes additional active sites for electrochemical reactions. In addition, the nanocage architecture and nitrogen-doped carbon wrapping in CN/Fe-CoS2 act as a protective layer to prevent CoS2 aggregation, thereby exposing additional active sites and enhancing the interface with the electrolyte. By optimizing the amount of Fe, CN/Fe-CoS2 demonstrates a remarkably superior electrocatalytic performance and stability, as evidenced by the low overpotential (η10) of 186 and 304 mV at the current density of 10 mA cm–2 in 1.0 M KOH media for HER and OER, respectively. Overall, combining heteroatom doping and structure designing represents a promising approach to develop high-performance electrocatalysts for water splitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ww完成签到,获得积分10
1秒前
1秒前
1秒前
3秒前
Atlantic完成签到,获得积分10
4秒前
Yang应助读书的时候采纳,获得10
4秒前
4秒前
微笑绿旋应助TieNiuxxx采纳,获得30
4秒前
嘒彼星发布了新的文献求助10
5秒前
甜心糖发布了新的文献求助10
7秒前
7秒前
Lucas应助务实凡灵采纳,获得10
9秒前
w51m应助ShelleyZhang采纳,获得10
10秒前
14秒前
JIU夭发布了新的文献求助10
14秒前
Yang发布了新的文献求助30
14秒前
逆时针应助淡定的镜子采纳,获得10
15秒前
16秒前
16秒前
16秒前
17秒前
0426完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
19秒前
19秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4032090
求助须知:如何正确求助?哪些是违规求助? 3570686
关于积分的说明 11362352
捐赠科研通 3301167
什么是DOI,文献DOI怎么找? 1817316
邀请新用户注册赠送积分活动 891492
科研通“疑难数据库(出版商)”最低求助积分说明 814255