A coupled-GAN architecture to fuse MRI and PET image features for multi-stage classification of Alzheimer’s disease

保险丝(电气) 阶段(地层学) 计算机科学 建筑 图像(数学) 疾病 人工智能 计算机视觉 模式识别(心理学) 病理 医学 电气工程 生物 工程类 历史 考古 古生物学
作者
Chandrajit Choudhury,Tripti Goel,M. Tanveer
出处
期刊:Information Fusion [Elsevier BV]
卷期号:109: 102415-102415 被引量:11
标识
DOI:10.1016/j.inffus.2024.102415
摘要

Alzheimer's disease (AD) is a degenerative neurological ailment that begins with memory loss and ultimately leads to a total loss of mental capacity. Researchers are interested in using magnetic resonance imaging (MRI) and positron emission tomography (PET) to find people with mild cognitive impairment (MCI), which is a stage before Alzheimer's disease (AD). Significant hippocampal loss and temporal lobe atrophy characterize the transition from MCI to AD, which can be visualized using T1-W structural MRI. PET visualizes brain glucose metabolism, which indicates neuronal activity, making it a viable neuroimaging method for AD diagnosis. The extraction and fusion of structural and metabolite information about brain alterations contained in multimodal data is crucial for achieving an appropriate classification result. Therefore, in this work a new end-to-end coupled-GAN (CGAN) architecture is introduced. The proposed CGANC network consists of two sub-models: a CGAN for extraction of fused features from multimodal data, and a CNN classifier to classify these features. The proposed CGAN model is trained to encode MRI and PET images into a shared latent space. The fused features are extracted from this shared latent space and then are classified according to particular stage of AD. In order to test the effectiveness of the suggested approach, experiments are done on the publicly available ADNI dataset and compared with state-of-the-art methods. The proposed method's source code will be made freely available at https://github.com/ChandrajitChoudhury/CGAN-AD . • MRI and PET images are fused to utilize structural and metabolic features for AD diagnosis. • An adversarial learning-based method is proposed to extract fused features. • A coupled adversarial subnetwork and a classification subnetwork have been designed. • Experiments are done on the publicly available ADNI dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乌禅发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
火星上如柏完成签到,获得积分10
2秒前
若尘发布了新的文献求助10
3秒前
7秒前
7秒前
老迟到的小蘑菇完成签到,获得积分10
9秒前
张璋完成签到,获得积分10
9秒前
韭菜何子完成签到,获得积分10
10秒前
11秒前
12秒前
jackten发布了新的文献求助10
13秒前
11完成签到 ,获得积分10
15秒前
15秒前
佰斯特威发布了新的文献求助30
16秒前
知性的颜完成签到 ,获得积分10
17秒前
南风发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
19秒前
ZY完成签到 ,获得积分10
20秒前
CQ发布了新的文献求助10
20秒前
白斯特完成签到,获得积分10
21秒前
21秒前
ybheart完成签到,获得积分10
22秒前
桐桐应助机灵雅寒采纳,获得10
23秒前
纸船完成签到,获得积分10
23秒前
23秒前
24秒前
111发布了新的文献求助10
25秒前
25秒前
李爱国应助棣棣采纳,获得10
26秒前
Owen应助CQ采纳,获得10
26秒前
天水完成签到,获得积分10
26秒前
26秒前
27秒前
28秒前
1111发布了新的文献求助80
28秒前
wusj120发布了新的文献求助10
29秒前
30秒前
31秒前
32秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Semiconductor devices : pioneering papers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862097
求助须知:如何正确求助?哪些是违规求助? 3404613
关于积分的说明 10640548
捐赠科研通 3127784
什么是DOI,文献DOI怎么找? 1724859
邀请新用户注册赠送积分活动 830746
科研通“疑难数据库(出版商)”最低求助积分说明 779413