A coupled-GAN architecture to fuse MRI and PET image features for multi-stage classification of Alzheimer’s disease

保险丝(电气) 阶段(地层学) 计算机科学 建筑 图像(数学) 疾病 人工智能 计算机视觉 模式识别(心理学) 病理 医学 电气工程 生物 工程类 历史 古生物学 考古
作者
Chandrajit Choudhury,Tripti Goel,M. Tanveer
出处
期刊:Information Fusion [Elsevier BV]
卷期号:109: 102415-102415 被引量:12
标识
DOI:10.1016/j.inffus.2024.102415
摘要

Alzheimer's disease (AD) is a degenerative neurological ailment that begins with memory loss and ultimately leads to a total loss of mental capacity. Researchers are interested in using magnetic resonance imaging (MRI) and positron emission tomography (PET) to find people with mild cognitive impairment (MCI), which is a stage before Alzheimer's disease (AD). Significant hippocampal loss and temporal lobe atrophy characterize the transition from MCI to AD, which can be visualized using T1-W structural MRI. PET visualizes brain glucose metabolism, which indicates neuronal activity, making it a viable neuroimaging method for AD diagnosis. The extraction and fusion of structural and metabolite information about brain alterations contained in multimodal data is crucial for achieving an appropriate classification result. Therefore, in this work a new end-to-end coupled-GAN (CGAN) architecture is introduced. The proposed CGANC network consists of two sub-models: a CGAN for extraction of fused features from multimodal data, and a CNN classifier to classify these features. The proposed CGAN model is trained to encode MRI and PET images into a shared latent space. The fused features are extracted from this shared latent space and then are classified according to particular stage of AD. In order to test the effectiveness of the suggested approach, experiments are done on the publicly available ADNI dataset and compared with state-of-the-art methods. The proposed method's source code will be made freely available at https://github.com/ChandrajitChoudhury/CGAN-AD . • MRI and PET images are fused to utilize structural and metabolic features for AD diagnosis. • An adversarial learning-based method is proposed to extract fused features. • A coupled adversarial subnetwork and a classification subnetwork have been designed. • Experiments are done on the publicly available ADNI dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助安详的小翠采纳,获得10
刚刚
茜茜哎科研完成签到,获得积分10
刚刚
刚刚
dengdeng完成签到,获得积分10
刚刚
001完成签到,获得积分10
1秒前
耍酷高山完成签到,获得积分10
1秒前
992575发布了新的文献求助10
1秒前
wqqq完成签到,获得积分10
1秒前
asdsfz完成签到,获得积分10
2秒前
vivi完成签到,获得积分10
2秒前
wddsf发布了新的文献求助10
2秒前
Jasper应助顺心的定帮采纳,获得10
3秒前
隐形曼青应助hha采纳,获得10
3秒前
3秒前
Ccc完成签到 ,获得积分20
3秒前
4秒前
5秒前
6秒前
雷如楠发布了新的文献求助10
6秒前
Yang2完成签到,获得积分10
6秒前
6秒前
一群牛发布了新的文献求助10
7秒前
8秒前
CipherSage应助muse999采纳,获得10
9秒前
十一发布了新的文献求助10
9秒前
10秒前
Hello应助丁丁采纳,获得10
10秒前
陈杰完成签到,获得积分10
10秒前
Akim应助积极的中蓝采纳,获得10
11秒前
芋圆Z.完成签到,获得积分10
11秒前
Catalina_S发布了新的文献求助20
12秒前
所所应助111采纳,获得10
12秒前
12秒前
Maggie发布了新的文献求助10
12秒前
14秒前
shelemi完成签到,获得积分10
14秒前
xmhxpz发布了新的文献求助10
15秒前
15秒前
FashionBoy应助软嘴唇采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4522073
求助须知:如何正确求助?哪些是违规求助? 3963849
关于积分的说明 12285827
捐赠科研通 3627582
什么是DOI,文献DOI怎么找? 1996397
邀请新用户注册赠送积分活动 1032857
科研通“疑难数据库(出版商)”最低求助积分说明 922743