Zero-Shot Attribute Consistent Model for Bearing Fault Diagnosis Under Unknown Domain

断层(地质) 零(语言学) 方位(导航) 领域(数学分析) 弹丸 计算机科学 算法 模式识别(心理学) 人工智能 数学 材料科学 数学分析 地质学 地震学 冶金 语言学 哲学
作者
Yi Qin,Wang Lv,Quan Qian,Yongfang Mao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11 被引量:3
标识
DOI:10.1109/tim.2024.3378256
摘要

Existing bearing fault diagnosis methods based on deep learning typically rely on a large amount of labeled data for training. However, acquisition of a large amount of labeled target data in practical engineering is challenging. A zero-shot attribute consistent (ZSAC) model is proposed in this study to address this issue. This diagnostic model only requires data from the known domain and does not require any data from the unknown domain during training. A fine-grained attribute description matrix is first constructed according to the various single fault types and fault impulse characteristics of bearing in this study, and it can be used to diagnose the faults in the unknown domain. A wide hybrid dilated convolutional neural network is designed for feature extraction, which can obtain more information with fewer parameters and provide more effective features for attribute classification than the existing convolutional neural networks. An attribute consistency loss is proposed to bridge the relationship between attributes and features in the known domain. This approach can effectively avoid attribute misclassification and improve diagnostic accuracy. The performance of ZSAC model is examined using two bearing datasets. Test results show that the proposed ZSAC model can effectively diagnose the single and compound faults of bearings under the unknown working condition and have advantages over other typical zero-shot learning and transfer learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuqiuchina完成签到,获得积分10
刚刚
1秒前
橘子完成签到 ,获得积分10
2秒前
2秒前
新明发布了新的文献求助30
2秒前
2秒前
pw完成签到 ,获得积分10
2秒前
脑洞疼应助76采纳,获得10
3秒前
louis136116完成签到,获得积分10
4秒前
MAKEYF完成签到 ,获得积分10
4秒前
独特雁枫完成签到,获得积分10
5秒前
cdercder应助F7erxl采纳,获得10
5秒前
谷雨秋发布了新的文献求助10
5秒前
海北完成签到 ,获得积分10
5秒前
烟花应助lei029采纳,获得10
6秒前
852应助小L采纳,获得10
6秒前
大胆砖头应助舒适路人采纳,获得10
7秒前
Phyllis完成签到,获得积分10
7秒前
7秒前
怡然亿先发布了新的文献求助10
7秒前
7秒前
坦率夕阳完成签到,获得积分10
10秒前
10秒前
王大大发布了新的文献求助10
10秒前
大猪完成签到,获得积分10
11秒前
LL发布了新的文献求助10
11秒前
16秒前
小L完成签到,获得积分10
17秒前
18秒前
18秒前
加菲丰丰应助舒适路人采纳,获得10
19秒前
rwww发布了新的文献求助10
19秒前
20秒前
小新的石斛应助呆萌冷风采纳,获得20
21秒前
小L发布了新的文献求助10
21秒前
冰柠橙夏完成签到,获得积分10
21秒前
22秒前
小愚发布了新的文献求助10
23秒前
乐乐应助新明采纳,获得10
24秒前
玛卡巴卡发布了新的文献求助10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786018
求助须知:如何正确求助?哪些是违规求助? 3331550
关于积分的说明 10251498
捐赠科研通 3046914
什么是DOI,文献DOI怎么找? 1672269
邀请新用户注册赠送积分活动 801207
科研通“疑难数据库(出版商)”最低求助积分说明 760020