亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LSTTN: A Long-Short Term Transformer-based spatiotemporal neural network for traffic flow forecasting

人工神经网络 期限(时间) 变压器 计算机科学 人工智能 工程类 电气工程 电压 物理 量子力学
作者
Qinyao Luo,Silu He,Xing Han,Yuhan Wang,Haifeng Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:293: 111637-111637 被引量:37
标识
DOI:10.1016/j.knosys.2024.111637
摘要

Accurate traffic forecasting is a fundamental problem in intelligent transportation systems and learning long-range traffic representations with key information through spatiotemporal graph neural networks (STGNNs) is a basic assumption of current traffic flow prediction models. However, due to structural limitations, existing STGNNs can only utilize short-range traffic flow data; therefore, the models cannot adequately learn the complex trends and periodic features in traffic flow. Besides, it is challenging to extract the key temporal information from the long historical traffic series and obtain a compact representation. To solve the above problems, we propose a novel LSTTN (Long-Short Term Transformer-based Network) framework comprehensively considering the long- and short-term features in historical traffic flow. First, we employ a masked subseries Transformer to infer the content of masked subseries from a small portion of unmasked subseries and their temporal context in a pretraining manner, forcing the model to efficiently learn compressed and contextual subseries temporal representations from long historical series. Then, based on the learned representations, long-term trend is extracted by using stacked 1D dilated convolution layers, and periodic features are extracted by dynamic graph convolution layers. For the difficulties in making time-step level prediction, LSTTN adopts a short-term trend extractor to learn fine-grained short-term temporal features. Finally, LSTTN fuses the long-term trend, periodic features and short-term features to obtain the prediction results. Experiments on four real-world datasets show that in 60-minute-ahead long-term forecasting, the LSTTN model achieves a minimum improvement of 5.63% and a maximum improvement of 16.78% over baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
xuhanghang发布了新的文献求助10
32秒前
32秒前
从容芮完成签到,获得积分0
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
tlh完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
无花果应助自由擎汉采纳,获得10
2分钟前
研友_8y2G0L完成签到,获得积分10
2分钟前
任无施发布了新的文献求助10
2分钟前
冇_完成签到 ,获得积分10
2分钟前
非常甜的菜头完成签到,获得积分10
2分钟前
2分钟前
亚当完成签到 ,获得积分10
3分钟前
3分钟前
852应助平淡雪糕采纳,获得30
3分钟前
liuxiaoying发布了新的文献求助10
3分钟前
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
平淡雪糕发布了新的文献求助30
3分钟前
gnufgg完成签到,获得积分10
4分钟前
自由擎汉发布了新的文献求助20
4分钟前
隐形曼青应助平淡雪糕采纳,获得10
4分钟前
香蕉觅云应助任无施采纳,获得10
4分钟前
4分钟前
5分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
5分钟前
平淡雪糕发布了新的文献求助10
5分钟前
5分钟前
绫艾完成签到,获得积分20
5分钟前
wwwcz发布了新的文献求助10
5分钟前
wwwcz完成签到,获得积分10
5分钟前
平淡雪糕完成签到,获得积分10
5分钟前
斯文败类应助科研通管家采纳,获得10
5分钟前
orixero应助科研通管家采纳,获得10
5分钟前
Altmimi发布了新的文献求助10
6分钟前
6分钟前
任无施完成签到,获得积分10
6分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795553
求助须知:如何正确求助?哪些是违规求助? 3340578
关于积分的说明 10300696
捐赠科研通 3057127
什么是DOI,文献DOI怎么找? 1677500
邀请新用户注册赠送积分活动 805424
科研通“疑难数据库(出版商)”最低求助积分说明 762529