Enhanced Reconstruction of Satellite-Derived Monthly Chlorophyll a Concentration With Fourier Transform Convolutional-LSTM

遥感 计算机科学 卫星 傅里叶变换 卫星广播 人工智能 环境科学 地质学 数学 天文 物理 数学分析
作者
Siyu Chen,Lin Deng,Jun Zhao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14
标识
DOI:10.1109/tgrs.2024.3394399
摘要

Chlorophyll a (Chl a) concentration, a vital indicator of water quality and crucial for assessing the health of marine ecosystems, presents significant challenges for satellite remote sensing due to various interferences, such as cloud cover, sun-glints, and adjacency effects. These impediments limit our understanding of marine ecosystems and hinder sustainable management practices. This study proposes a novel approach to overcome these challenges: the Fourier Transform Convolutional Long Short-Term Memory (FTC-LSTM) framework. Integrating Fourier Transform Convolution (FTC) and Long Short-Term Memory (LSTM) layers, the FTC-LSTM model aims to estimate cloud-free Chl a, improving the accuracy and robustness of the inpainting process. Evaluation of the FTC-LSTM model across the South China Sea (SCS), along with two other state-of-the-art deep learning models (DINCAE and Conv-LSTM), reveals its consistent superior performance across regions with distinct characteristics. Notably, the FTC-LSTM model achieved the highest scores with impressive values: 0.95 for determination coefficient (R 2 ), 47.57 for peak signal-to-noise ratio (PSNR), 0.99 for structural similarity index measure (SSIM), and 0.01 for root mean square error (RMSE). Temporal analysis demonstrates the model's ability to accurately capture the temporal variability of Chl a in the SCS. Furthermore, comparison of spatial patterns indicates that the FTC-LSTM model excels in reliably reconstructing Chl a distributions within the SCS, outperforming other models, particularly in tropical and subtropical regions significantly impacted by clouds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助yihoxu采纳,获得10
刚刚
刚刚
Peng完成签到 ,获得积分10
1秒前
1秒前
1秒前
冷静的小之完成签到,获得积分10
2秒前
仁爱的伯云完成签到,获得积分10
3秒前
CAE上路到上吊完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
mao应助jay2000采纳,获得50
7秒前
罗氏集团完成签到,获得积分10
8秒前
Blue发布了新的文献求助10
8秒前
英姑应助闪闪的鹏博采纳,获得30
8秒前
18101306689完成签到,获得积分20
8秒前
Ly发布了新的文献求助10
9秒前
SMG发布了新的文献求助10
9秒前
CipherSage应助勤劳尔曼采纳,获得10
10秒前
10秒前
科研通AI2S应助跳跃的曼荷采纳,获得10
13秒前
香菜卷煎饼完成签到,获得积分10
13秒前
13秒前
13秒前
充电泽完成签到,获得积分10
14秒前
偷猫的鱼完成签到,获得积分10
16秒前
晨曦夕日发布了新的文献求助10
17秒前
17秒前
OmmeHabiba发布了新的文献求助10
19秒前
我是老大应助wang5945采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
19秒前
SYLH应助科研通管家采纳,获得10
19秒前
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
20秒前
斯文败类应助闪闪的鹏博采纳,获得10
22秒前
番茄炒西红柿完成签到,获得积分10
24秒前
库里强发布了新的文献求助10
25秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846953
求助须知:如何正确求助?哪些是违规求助? 3389502
关于积分的说明 10557373
捐赠科研通 3109790
什么是DOI,文献DOI怎么找? 1713978
邀请新用户注册赠送积分活动 825026
科研通“疑难数据库(出版商)”最低求助积分说明 775166