A Secure and Interpretable AI for Smart Healthcare System: A Case Study on Epilepsy Diagnosis Using EEG Signals

计算机科学 人工智能 脑电图 模式识别(心理学) 小波 特征(语言学) 过程(计算) 数据挖掘 领域(数学分析) 机器学习 数学 数学分析 哲学 精神科 操作系统 语言学 心理学
作者
Ijaz Ahmad,Mingxing Zhu,Guanglin Li,Danish Javeed,Prabhat Kumar,Shixiong Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3236-3247 被引量:6
标识
DOI:10.1109/jbhi.2024.3366341
摘要

The efficient patient-independent and interpretable framework for electroencephalogram (EEG) epileptic seizure detection (ESD) has informative challenges due to the complex pattern of EEG nature. Automated detection of ES is crucial, and Explainable Artificial Intelligence (XAI) is urgently needed to justify algorithmic predictions in clinical settings. Therefore, this study implements an XAI-based computer-aided ES detection system (XAI-CAESDs), comprising three major modules including of feature engineering module, a seizure detection module, and an explainable decision-making process module in a smart healthcare system. To ensure the privacy and security of biomedical EEG data, the blockchain is employed. Initially, the Butterworth filter eliminates various artifacts, and the Dual-Tree Complex Wavelet Transform (DTCWT) decomposes EEG signals, extracting real and imaginary eigenvalue features using frequency domain (FD), time domain (TD), and Fractal Dimension (FD) of linear and non-linear features. The best features are selected by using Correlation Coefficients (CC) and Distance Correlation (DC). The selected features are fed into the Stacking Ensemble Classifiers (SEC) for EEG ES detection. Further, the Shapley Additive Explanations (SHAP) method of XAI is implemented to facilitate the interpretation of predictions made by the proposed approach, enabling medical experts to make accurate and understandable decisions. The proposed ensemble-based stacking classifiers in XAI-CAESDs have demonstrated 2% best average accuracy, Recall, specificity, and F1-score using the University of California, Irvine, Bonn University, and Boston Children's Hospital-MIT EEG data sets. The proposed framework enhances decision-making and the diagnosis process using biomedical EEG signals and ensures data security in smart healthcare systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
虚幻的绫完成签到,获得积分10
3秒前
4秒前
4秒前
湖里发布了新的文献求助10
4秒前
次一口多多完成签到,获得积分10
5秒前
烟花应助舒适乐安采纳,获得10
5秒前
5秒前
英俊的铭应助taku采纳,获得10
5秒前
33发布了新的文献求助10
6秒前
6秒前
耍酷的咖啡豆完成签到,获得积分10
8秒前
斯文败类应助柯燕婷采纳,获得10
8秒前
10秒前
krzysku完成签到,获得积分10
11秒前
herococa应助小米采纳,获得10
11秒前
12秒前
Jasper应助锌小子采纳,获得10
13秒前
qqq关闭了qqq文献求助
13秒前
Peng发布了新的文献求助10
13秒前
活泼的面包完成签到 ,获得积分10
14秒前
answer发布了新的文献求助10
15秒前
伍六七完成签到 ,获得积分10
15秒前
Persevere发布了新的文献求助10
17秒前
JMrider发布了新的文献求助10
17秒前
刘~完成签到,获得积分10
18秒前
大个应助棋士采纳,获得10
19秒前
Peng完成签到,获得积分10
19秒前
20秒前
酱紫发布了新的文献求助10
21秒前
26秒前
27秒前
追寻尔容关注了科研通微信公众号
28秒前
30秒前
31秒前
32秒前
tang发布了新的文献求助10
35秒前
35秒前
36秒前
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3948871
求助须知:如何正确求助?哪些是违规求助? 3494246
关于积分的说明 11071719
捐赠科研通 3224894
什么是DOI,文献DOI怎么找? 1782595
邀请新用户注册赠送积分活动 867174
科研通“疑难数据库(出版商)”最低求助积分说明 800623