Path Planning of Autonomous Mobile Robot in Comprehensive Unknown Environment Using Deep Reinforcement Learning

强化学习 计算机科学 移动机器人 运动规划 人工智能 机器人 自动计划和调度 路径(计算) 机器人运动学 人机交互 分布式计算 计算机网络
作者
Zekun Bai,Hui Pang,Zhaonian He,Bin Zhao,Tong Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 22153-22166 被引量:11
标识
DOI:10.1109/jiot.2024.3379361
摘要

In real world situations, some unavoidable problems like significant dependence on environment information, long inference time and weak anti-disturbance ability are often involved in path planning of autonomous mobile robot (AMR) under unknown environments. To solve these issues, this paper proposes an improved deep reinforcement learning based path planning algorithm to find out an optimized path for a class of AMRs. Frist, the path planning of AMR is described as a Markov decision process framework, and the Double Deep Q Network (DDQN) is utilized to obtain the optimal adaptive solutions of AMRs path planning. Second, a comprehensive reward function integrated with heuristic function is designed to navigate the AMR into the target area. Afterwards, an optimized deep neural network with an adaptive e-greedy action selection policy is designed to deal with the trade-off between exploration and exploitation, thus further to improve the global searching capability and the convergence performance for the AMR path planning. Moreover, Bezier curve theory is utilized to smooth the planned path. Finally, the comparative simulations are carried out to validate our proposed path planning algorithm. The results show that, compared with DQN, A*, RRT, APF algorithms, our improved DDQN algorithm can produce safer and shorter global paths in comprehensive unknown environments. Meanwhile, the IDDQN algorithm has strong adaptability to random disturbances in unknown environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿怪发布了新的文献求助10
1秒前
123发布了新的文献求助10
1秒前
naji发布了新的文献求助10
1秒前
1秒前
1秒前
Mindy完成签到,获得积分10
2秒前
该房地产个人的完成签到,获得积分10
3秒前
4秒前
hhh发布了新的文献求助10
4秒前
田様应助MRM采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
Duxize发布了新的文献求助10
6秒前
李发行完成签到,获得积分10
7秒前
7秒前
FashionBoy应助牧木采纳,获得10
7秒前
8秒前
8秒前
menxiaomei完成签到,获得积分20
8秒前
英俊的铭应助桔梗采纳,获得10
10秒前
baoleijia发布了新的文献求助10
10秒前
yc发布了新的文献求助10
10秒前
oo完成签到,获得积分10
10秒前
10秒前
11秒前
menxiaomei发布了新的文献求助10
11秒前
李发行发布了新的文献求助10
12秒前
12秒前
小二郎应助xuanhui采纳,获得10
12秒前
Zobie完成签到,获得积分10
13秒前
酷波er应助陶醉龙猫采纳,获得30
13秒前
14秒前
陈词滥调发布了新的文献求助10
14秒前
科研通AI5应助不安乐菱采纳,获得30
16秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799740
求助须知:如何正确求助?哪些是违规求助? 3345059
关于积分的说明 10323271
捐赠科研通 3061547
什么是DOI,文献DOI怎么找? 1680447
邀请新用户注册赠送积分活动 807069
科研通“疑难数据库(出版商)”最低求助积分说明 763462