Effectively fusing clinical knowledge and AI knowledge for reliable lung nodule diagnosis

计算机科学 可解释性 人工智能 机器学习 特征(语言学) 特征提取 模式识别(心理学) 自然语言处理 数据挖掘 哲学 语言学
作者
Duwei Dai,Yongheng Sun,Caixia Dong,Qingsen Yan,Zongfang Li,Songhua Xu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:230: 120634-120634 被引量:4
标识
DOI:10.1016/j.eswa.2023.120634
摘要

Clinicians typically use semantic features to judge the malignant status of nodules, while artificial intelligence systems (AI) tend to extract unknown features to diagnose nodules. The former relies on clinical knowledge, while the latter explores AI knowledge. Although many studies indicate that fusing clinical and AI knowledge can help computer-aided diagnosis (CAD) systems improve diagnostic accuracy and gain clinician approval, how to effectively fuse them is still an open question. This paper proposes a simple and effective pipeline (abbreviated as CKAK), which fuses clinical and AI knowledge at both feature and decision levels for accurate lung nodule malignancy classification and semantic attributes characterization. The feature-level fusion can retain rich information in high-dimensional features and improve the model’s accuracy; the decision-level fusion can provide some interpretability for the model’s decision-making process, which is expected in clinical applications. Specifically, the proposed CKAK consists of two sequential stages: (i) the initial prediction stage (IPS); and (ii) the prediction refine stage (PRS). The IPS predicts eight radiologist-interpreted semantic attributes and an initial malignancy diagnosis in parallel. Then, these results are fed to the subsequent PRS to refine the diagnosis further by fully fusing them at feature and decision levels. Besides, to enhance the ability of feature learning, we propose a novel scale-aware feature extraction block (SAFE). It integrates multi-scale contextual features with a lightweight Transformer rather than adding or concatenating them roughly. Extensive experiments at the LIDC-IDRI data set show that the proposed CKAK can achieve superior benign-malignant classification accuracy with minor radiologist-interpreted semantic scores error, meeting the need for a reliable CAD system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
peng发布了新的文献求助10
3秒前
lor完成签到,获得积分10
4秒前
YGYANG发布了新的文献求助10
4秒前
11完成签到,获得积分10
7秒前
7秒前
叶叶叶发布了新的文献求助10
7秒前
Lucas应助糖糖采纳,获得10
8秒前
8秒前
linlin完成签到,获得积分10
9秒前
赛艇队长发布了新的文献求助10
11秒前
脑洞疼应助小茗采纳,获得30
12秒前
科研通AI5应助竞鹤采纳,获得10
12秒前
niceweiwei发布了新的文献求助10
12秒前
miracle811发布了新的文献求助10
13秒前
高大沧海完成签到,获得积分10
15秒前
逆行者应助格兰德法泽尔采纳,获得20
16秒前
joe55667788发布了新的文献求助10
17秒前
我是老大应助清新的安波采纳,获得10
19秒前
20秒前
peng完成签到,获得积分10
22秒前
露噜噜完成签到,获得积分10
22秒前
科研通AI5应助Allen采纳,获得10
23秒前
23秒前
玉米发布了新的文献求助10
23秒前
joe55667788完成签到,获得积分20
25秒前
25秒前
25秒前
ljs发布了新的文献求助10
26秒前
李燕君发布了新的文献求助10
27秒前
酷波er应助DF采纳,获得10
28秒前
28秒前
29秒前
31秒前
31秒前
31秒前
31秒前
32秒前
32秒前
陈雷应助风趣的芙蓉采纳,获得50
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795026
求助须知:如何正确求助?哪些是违规求助? 3339955
关于积分的说明 10298247
捐赠科研通 3056550
什么是DOI,文献DOI怎么找? 1677052
邀请新用户注册赠送积分活动 805118
科研通“疑难数据库(出版商)”最低求助积分说明 762333