DNA Origami Tessellations

DNA折纸 镶嵌(计算机图形学) 瓦片 单态 纳米技术 材料科学 计算机科学 结晶学 几何学 化学 数学 纳米结构 组合数学 内射函数 复合材料
作者
Yue Tang,Hao Liu,Qi Wang,Xiaodong Qi,Yu Lu,Petr Šulc,Fei Zhang,Hao Yan,Shuoxing Jiang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (25): 13858-13868 被引量:17
标识
DOI:10.1021/jacs.3c03044
摘要

Molecular tessellation research aims to elucidate the underlying principles that govern intricate patterns in nature and to leverage these principles to create precise and ordered structures across multiple scales, thereby facilitating the emergence of novel functionalities. DNA origami nanostructures are excellent building blocks for constructing tessellation patterns. However, the size and complexity of DNA origami tessellation systems are currently limited by several unexplored factors relevant to the accuracy of essential design parameters, the applicability of design strategies, and the compatibility between different tiles. Here, we present a general method for creating DNA origami tiles that grow into tessellation patterns with micrometer-scale order and nanometer-scale precision. Interhelical distance (D) was identified as a critical design parameter determining tile conformation and tessellation outcome. Finely tuned D facilitated the accurate geometric design of monomer tiles with minimized curvature and improved tessellation capability, enabling the formation of single-crystalline lattices ranging from tens to hundreds of square micrometers. The general applicability of the design method was demonstrated by 9 tile geometries, 15 unique tile designs, and 12 tessellation patterns covering Platonic, Laves, and Archimedean tilings. Particularly, we took two strategies to increase the complexity of DNA origami tessellation, including reducing the symmetry of monomer tiles and coassembling tiles of different geometries. Both yielded various tiling patterns that rivaled Platonic tilings in size and quality, indicating the robustness of the optimized tessellation system. This study will promote DNA-templated, programmable molecular and material patterning and open up new opportunities for applications in metamaterial engineering, nanoelectronics, and nanolithography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
swallow发布了新的文献求助10
1秒前
毅力鸟发布了新的文献求助10
1秒前
2秒前
3秒前
啊嘞哇塞完成签到,获得积分10
3秒前
4秒前
无敌最俊朗应助文献狗采纳,获得10
5秒前
麦子完成签到,获得积分10
6秒前
jacobian完成签到,获得积分10
6秒前
共享精神应助啊嘞哇塞采纳,获得10
8秒前
berg发布了新的文献求助10
8秒前
追寻映容发布了新的文献求助10
9秒前
9秒前
lcdt完成签到,获得积分10
11秒前
无助的考拉完成签到,获得积分10
12秒前
2041完成签到,获得积分10
13秒前
wangye完成签到 ,获得积分10
15秒前
16秒前
乐乐应助jiangshanshan采纳,获得10
16秒前
默默尔安完成签到 ,获得积分10
16秒前
17秒前
小二郎应助小苹果采纳,获得10
17秒前
ffffwj2024完成签到,获得积分10
19秒前
科研通AI5应助无助的考拉采纳,获得10
19秒前
快乐的忆安完成签到,获得积分10
20秒前
摇滚谬中庸完成签到 ,获得积分10
21秒前
Anonymous发布了新的文献求助10
21秒前
22秒前
22秒前
ys完成签到,获得积分10
23秒前
tyh完成签到,获得积分10
24秒前
24秒前
特务兔完成签到 ,获得积分10
25秒前
道明嗣完成签到 ,获得积分10
25秒前
25秒前
小熊童话书完成签到,获得积分10
26秒前
JokerC发布了新的文献求助30
26秒前
YingxueRen完成签到,获得积分10
26秒前
领导范儿应助axlyjia采纳,获得10
27秒前
悦耳的真完成签到,获得积分10
28秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213919
求助须知:如何正确求助?哪些是违规求助? 4389592
关于积分的说明 13667295
捐赠科研通 4250791
什么是DOI,文献DOI怎么找? 2332246
邀请新用户注册赠送积分活动 1329855
关于科研通互助平台的介绍 1283537