DNA Origami Tessellations

DNA折纸 镶嵌(计算机图形学) 瓦片 单态 纳米技术 材料科学 计算机科学 结晶学 几何学 化学 数学 纳米结构 组合数学 内射函数 复合材料
作者
Yue Tang,Hao Liu,Qi Wang,Xiaodong Qi,Yu Lu,Petr Šulc,Fei Zhang,Hao Yan,Shuoxing Jiang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (25): 13858-13868 被引量:17
标识
DOI:10.1021/jacs.3c03044
摘要

Molecular tessellation research aims to elucidate the underlying principles that govern intricate patterns in nature and to leverage these principles to create precise and ordered structures across multiple scales, thereby facilitating the emergence of novel functionalities. DNA origami nanostructures are excellent building blocks for constructing tessellation patterns. However, the size and complexity of DNA origami tessellation systems are currently limited by several unexplored factors relevant to the accuracy of essential design parameters, the applicability of design strategies, and the compatibility between different tiles. Here, we present a general method for creating DNA origami tiles that grow into tessellation patterns with micrometer-scale order and nanometer-scale precision. Interhelical distance (D) was identified as a critical design parameter determining tile conformation and tessellation outcome. Finely tuned D facilitated the accurate geometric design of monomer tiles with minimized curvature and improved tessellation capability, enabling the formation of single-crystalline lattices ranging from tens to hundreds of square micrometers. The general applicability of the design method was demonstrated by 9 tile geometries, 15 unique tile designs, and 12 tessellation patterns covering Platonic, Laves, and Archimedean tilings. Particularly, we took two strategies to increase the complexity of DNA origami tessellation, including reducing the symmetry of monomer tiles and coassembling tiles of different geometries. Both yielded various tiling patterns that rivaled Platonic tilings in size and quality, indicating the robustness of the optimized tessellation system. This study will promote DNA-templated, programmable molecular and material patterning and open up new opportunities for applications in metamaterial engineering, nanoelectronics, and nanolithography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心怜阳完成签到,获得积分10
1秒前
1秒前
浮游应助曾经的康乃馨采纳,获得10
1秒前
Cecilia完成签到 ,获得积分10
3秒前
chenyu完成签到,获得积分10
3秒前
拓枫发布了新的文献求助10
4秒前
左欣岳完成签到 ,获得积分10
6秒前
君无戏言给君无戏言的求助进行了留言
7秒前
小小K发布了新的文献求助10
7秒前
lt完成签到,获得积分20
9秒前
wanci应助友好小刺猬采纳,获得10
9秒前
affff发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
浮游应助曾经的康乃馨采纳,获得10
11秒前
13秒前
ll发布了新的文献求助10
13秒前
DJH完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
曾经冰露完成签到,获得积分10
16秒前
小分队完成签到,获得积分10
16秒前
milo6666发布了新的文献求助10
16秒前
拓枫完成签到,获得积分10
16秒前
16秒前
回留发布了新的文献求助10
16秒前
神勇的电灯胆完成签到,获得积分10
17秒前
aaa发布了新的文献求助10
17秒前
19秒前
19秒前
小分队发布了新的文献求助10
19秒前
20秒前
21秒前
JamesPei应助风格化橙采纳,获得10
22秒前
天天快乐应助风格化橙采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707