清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A hybrid photovoltaic/wind power prediction model based on Time2Vec, WDCNN and BiLSTM

均方误差 均方预测误差 光伏系统 计算机科学 人工神经网络 卷积神经网络 平均绝对百分比误差 可靠性(半导体) 平均绝对误差 近似误差 功率(物理) 人工智能 模式识别(心理学) 算法 数学 统计 工程类 物理 电气工程 量子力学
作者
Donghan Geng,Bo Wang,Qi Gao
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:291: 117342-117342 被引量:28
标识
DOI:10.1016/j.enconman.2023.117342
摘要

Accurate prediction of photovoltaic (PV)/wind power is an effective solution for the grid stability, reasonable dispatching and power supply reliability. Nowadays, various deep learning prediction methods are developed, most of which are recurrent neural network (RNN)-based and convolutional neural network (CNN)-based. To further improve the prediction performance, a novel hybrid method based on deep CNN with wide first-layer kernels (WDCNN) and bidirection long short-term (BiLSTM) is presented in this paper, in which WDCNN is introduced for large receptive field and useful information extraction, and stacked BiLSTM layers is incorporated to extract temporal correlations of past and future datasets. Besides, Time2Vec is adopted for better feature extraction through decomposing the time series data into non-periodic and periodic components. Several ablation and comparison experiments are carried out with a case study in Yongxing Island, China, and the performance metrics including normalized mean absolute error (NMAE), normalized mean square error (NMSE), normalized root mean square error (NRMSE), and mean absolute scaled error (MASE) confirm the effectiveness and superiority of the proposed model. Compared with individual WDCNN and BiLSTM, the performance of the combined WDCNN-BiLSTM are improved by 5.79%, 6.61%, 3.36%, 5.79% and 2.03%, 3.54%, 1.78%, 2.03% for PV prediction, and 20.38%, 29.37%, 15.96%, 20.38% and 39.12%, 59.68%, 36.50%, 39.12% for wind prediction, respectively. The adoption of Time2Vec further improves the prediction performance by 5.96%, 8.10%, 4.14%, 5.96% for PV prediction, and 4.86%, 9.19%, 4.70%, 4.86% for wind prediction, respectively. The proposed model yields most accurate prediction compared with other competing models. The replacement of CNN with WDCNN improves the prediction accuracy by 6.64%, 8.47%, 4.33%, 6.64% for PV prediction, and 30.59%, 42.78%, 24.35%, 30.59% for wind prediction, respectively. Moreover, the proposed model significantly outperforms compared models in prediction with more random fluctuations, which demonstrates the superiority of the proposed model in mining complex relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuan完成签到,获得积分10
10秒前
整齐百褶裙完成签到 ,获得积分10
17秒前
jailbreaker完成签到 ,获得积分10
18秒前
huangzsdy完成签到,获得积分10
19秒前
22秒前
萨尔莫斯发布了新的文献求助10
27秒前
打打应助王博士采纳,获得10
30秒前
Ava应助萨尔莫斯采纳,获得10
43秒前
缥缈的闭月完成签到,获得积分10
43秒前
阳光的道消完成签到,获得积分10
50秒前
友好羊应助尤瑟夫采纳,获得30
52秒前
53秒前
王博士发布了新的文献求助10
56秒前
归尘应助科研通管家采纳,获得30
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
laber完成签到,获得积分10
1分钟前
小蘑菇应助王博士采纳,获得10
1分钟前
蔡勇强完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
王博士发布了新的文献求助10
1分钟前
自律发布了新的文献求助10
1分钟前
1分钟前
萨尔莫斯发布了新的文献求助10
1分钟前
pjxxx完成签到 ,获得积分10
1分钟前
arsenal完成签到 ,获得积分10
1分钟前
susan完成签到 ,获得积分10
1分钟前
zhdjj完成签到 ,获得积分10
2分钟前
东风完成签到,获得积分10
2分钟前
英姑应助王博士采纳,获得10
2分钟前
jenningseastera应助萨尔莫斯采纳,获得10
2分钟前
zhuosht完成签到 ,获得积分10
2分钟前
2分钟前
白桃乌龙完成签到,获得积分10
2分钟前
王博士发布了新的文献求助10
2分钟前
不倦应助萨尔莫斯采纳,获得10
2分钟前
naiyouqiu1989完成签到,获得积分10
2分钟前
九五式自动步枪完成签到 ,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780865
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226680
捐赠科研通 3041524
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799075
科研通“疑难数据库(出版商)”最低求助积分说明 758732