Deep‐Learning‐Enabled Intelligent Design of Thermal Metamaterials

超材料 热的 灵活性(工程) 变换光学 实现(概率) 计算机科学 材料科学 机械工程 拓扑(电路) 物理 光电子学 工程类 电气工程 数学 统计 气象学
作者
Yihui Wang,Wei Sha,Mi Xiao,Cheng‐Wei Qiu,Liang Gao
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (33) 被引量:32
标识
DOI:10.1002/adma.202302387
摘要

Thermal metamaterials are mixture-based materials that are engineered to manipulate, control, and process the flow of heat, enabling numerous advanced thermal metadevices. Conventional thermal metamaterials are predominantly designed with tractable regular geometries owing to the delicate analytical solution and easy-to-implement effective structures. Nevertheless, it is challenging to achieve the design of thermal metamaterials with arbitrary geometry, letting alone intelligent (automatic, real-time, and customizable) design of thermal metamaterials. Here, an intelligent design framework of thermal metamaterials is presented via a pre-trained deep learning model, which gracefully achieves the desired functional structures of thermal metamaterials with exceptional speed and efficiency, regardless of arbitrary geometry. It possesses incomparable versatility and is of great flexibility to achieve the corresponding design of thermal metamaterials with different background materials, anisotropic geometries, and thermal functionalities. The transformation thermotics-induced, freeform, background-independent, and omnidirectional thermal cloaks, whose structural configurations are automatically designed in real-time according to shape and background, are numerically and experimentally demonstrated. This study sets up a novel paradigm for an automatic and real-time design of thermal metamaterials in a new design scenario. More generally, it may open a door to the realization of an intelligent design of metamaterials in also other physical domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
刚刚
11哥应助科研通管家采纳,获得20
刚刚
李健应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
奋斗蝴蝶完成签到,获得积分10
1秒前
meixinhu完成签到,获得积分10
2秒前
2秒前
动漫大师发布了新的文献求助10
3秒前
3秒前
3秒前
蓝桉完成签到,获得积分10
5秒前
Santasy完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
禹代秋完成签到,获得积分10
7秒前
zyb发布了新的文献求助10
7秒前
_Charmo发布了新的文献求助10
7秒前
花开富贵发布了新的文献求助10
7秒前
少年发布了新的文献求助10
8秒前
Zz完成签到 ,获得积分10
8秒前
Wudifairy完成签到,获得积分10
9秒前
动漫大师发布了新的文献求助10
10秒前
piaopiao2021发布了新的文献求助10
11秒前
11秒前
传奇3应助关键词采纳,获得10
11秒前
华仔应助柚木采纳,获得10
11秒前
神光发布了新的文献求助10
11秒前
13秒前
14秒前
_Charmo完成签到,获得积分10
14秒前
君无名完成签到 ,获得积分10
14秒前
14秒前
15秒前
John发布了新的文献求助10
15秒前
少年完成签到,获得积分10
16秒前
meitounao完成签到,获得积分10
17秒前
健脊护柱完成签到 ,获得积分10
17秒前
酷酷的雨琴完成签到,获得积分10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791521
求助须知:如何正确求助?哪些是违规求助? 3335970
关于积分的说明 10278058
捐赠科研通 3052609
什么是DOI,文献DOI怎么找? 1675169
邀请新用户注册赠送积分活动 803206
科研通“疑难数据库(出版商)”最低求助积分说明 761123