Deep learning with coherent VCSEL neural networks

计算机科学 人工神经网络 电子工程 人工智能 工程类
作者
Zaijun Chen,Alexander Sludds,Ronald Davis,Ian Christen,Liane Bernstein,Lamia Ateshian,Tobias Heuser,Niels Heermeier,James A. Lott,Stephan Reitzenstein,Ryan Hamerly,Dirk Englund
出处
期刊:Nature Photonics [Nature Portfolio]
卷期号:17 (8): 723-730 被引量:85
标识
DOI:10.1038/s41566-023-01233-w
摘要

Deep neural networks (DNNs) are reshaping the field of information processing. With their exponential growth challenging existing electronic hardware, optical neural networks (ONNs) are emerging to process DNN tasks in the optical domain with high clock rates, parallelism and low-loss data transmission. However, to explore the potential of ONNs, it is necessary to investigate the full-system performance incorporating the major DNN elements, including matrix algebra and nonlinear activation. Existing challenges to ONNs are high energy consumption due to low electro-optic (EO) conversion efficiency, low compute density due to large device footprint and channel crosstalk, and long latency due to the lack of inline nonlinearity. Here we experimentally demonstrate an ONN system that simultaneously overcomes all these challenges. We exploit neuron encoding with volume-manufactured micron-scale vertical-cavity surface-emitting laser (VCSEL) transmitter arrays that exhibit high EO conversion (<5 attojoule/symbol with $V_\pi$=4 mV), high operation bandwidth (up to 25 GS/s), and compact footprint (<0.01 mm$^2$ per device). Photoelectric multiplication allows low-energy matrix operations at the shot-noise quantum limit. Homodyne detection-based nonlinearity enables nonlinear activation with instantaneous response. The full-system energy efficiency and compute density reach 7 femtojoules per operation (fJ/OP) and 25 TeraOP/(mm$^2\cdot$ s), both representing a >100-fold improvement over state-of-the-art digital computers, with substantially several more orders of magnitude for future improvement. Beyond neural network inference, its feature of rapid weight updating is crucial for training deep learning models. Our technique opens an avenue to large-scale optoelectronic processors to accelerate machine learning tasks from data centers to decentralized edge devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liiy发布了新的文献求助10
1秒前
卡卡西的猫完成签到 ,获得积分10
2秒前
xiaou完成签到,获得积分10
2秒前
3秒前
科研通AI5应助chichi采纳,获得10
4秒前
非也非也6完成签到,获得积分10
5秒前
5秒前
笑笑完成签到 ,获得积分10
6秒前
MJ发布了新的文献求助20
6秒前
Max发布了新的文献求助10
7秒前
7秒前
桐桐应助小张要顺利毕业采纳,获得30
8秒前
溫蒂发布了新的文献求助10
8秒前
8秒前
zz发布了新的文献求助10
9秒前
10秒前
ZL发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
汉堡包应助liiy采纳,获得10
10秒前
10秒前
wzt完成签到,获得积分10
12秒前
12秒前
大个应助123采纳,获得10
12秒前
在水一方应助Chase采纳,获得10
12秒前
高高一刀发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
忧伤的宛筠完成签到,获得积分10
16秒前
小高16完成签到,获得积分10
16秒前
z7777777完成签到,获得积分10
16秒前
18秒前
小高16发布了新的文献求助10
19秒前
科学家发布了新的文献求助10
20秒前
z7777777发布了新的文献求助10
20秒前
撒旦啊实打实的完成签到,获得积分10
20秒前
Max完成签到,获得积分10
21秒前
高高一刀完成签到,获得积分10
22秒前
123完成签到,获得积分10
23秒前
lss发布了新的文献求助10
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4213323
求助须知:如何正确求助?哪些是违规求助? 3747628
关于积分的说明 11790715
捐赠科研通 3414738
什么是DOI,文献DOI怎么找? 1873965
邀请新用户注册赠送积分活动 928201
科研通“疑难数据库(出版商)”最低求助积分说明 837504