Orbital angular momentum superimposed mode recognition based on multi-label image classification

光学 角动量 模式(计算机接口) 图像处理 物理 计算机科学 人工智能 图像(数学) 模式识别(心理学) 计算机视觉 量子力学 操作系统
作者
Wei Liu,Chuanfu Tu,Yawen Liu,Zhiwei Ye
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:32 (22): 38187-38187
标识
DOI:10.1364/oe.541716
摘要

Orbital angular momentum (OAM) multiplexing technology has great potential in high capacity optical communication. OAM superimposed mode can extend communication channels and thus enhance the capacity, and accurate recognition of multi-OAM superimposed mode at the receiver is very crucial. However, traditional methods are inefficient and complex for the recognition task. Machine learning and deep learning can offer fast, accurate and adaptable recognition, but they also face challenges. At present, the OAM mode recognition mainly focus on single OAM mode and ± l superimposed dual-OAM mode, while few researches on multi-OAM superimposed mode, due to the limitations of single-object image classification techniques and the diversity of features to recognize. To this end, we develop a recognition method combined with multi-label image classification to accurately recognize multi-OAM superimposed mode vortex beams. Firstly, we create datasets of intensity distribution map of three-OAM and four-OAM superimposed mode vortex beams based on numerical simulations and experimental acqusitions. Then we design a progressive channel-spatial attention (PCSA) model, which incorporates a progressive training strategy and two weighted attention modules. For the numerical simulation datasets, our model achieves the highest average recognition accuracy of 94.9% and 91.2% for three-OAM and four-OAM superimposed mode vortex beams with different transmission distances and noise strengths respectively. The highest experimental average recognition accuracy for three-OAM superimposed mode achieves 92.7%, which agrees with the numerical result very well. Furthermore, our model significantly outperforms in most metrics compared with ConvNeXt, and all experiments are within the affordable range of computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小宁发布了新的文献求助10
2秒前
5秒前
5秒前
lp完成签到,获得积分10
6秒前
张振博关注了科研通微信公众号
7秒前
科研通AI5应助bonnie采纳,获得10
7秒前
8秒前
刘汐发布了新的文献求助10
8秒前
10秒前
saikun发布了新的文献求助10
11秒前
田様应助LJ徽采纳,获得10
12秒前
小二郎应助CA采纳,获得10
14秒前
思源应助清蒸鱼采纳,获得10
15秒前
17秒前
17秒前
17秒前
kartikbalankhe给kartikbalankhe的求助进行了留言
17秒前
19秒前
21秒前
张振博发布了新的文献求助50
21秒前
旧是发布了新的文献求助10
22秒前
123完成签到,获得积分20
22秒前
量子星尘发布了新的文献求助10
24秒前
LJ徽发布了新的文献求助10
24秒前
莫离完成签到 ,获得积分10
24秒前
Naturewoman完成签到 ,获得积分10
25秒前
27秒前
27秒前
31秒前
清蒸鱼发布了新的文献求助10
33秒前
orixero应助南方有我采纳,获得10
34秒前
Duke_ethan完成签到,获得积分10
36秒前
二水发布了新的文献求助10
37秒前
42秒前
42秒前
666完成签到,获得积分10
43秒前
45秒前
wujiwuhui完成签到 ,获得积分10
45秒前
安静碧灵发布了新的文献求助10
46秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4214386
求助须知:如何正确求助?哪些是违规求助? 3748621
关于积分的说明 11792689
捐赠科研通 3415109
什么是DOI,文献DOI怎么找? 1874153
邀请新用户注册赠送积分活动 928378
科研通“疑难数据库(出版商)”最低求助积分说明 837610