Glioma Identification Based on Digital Multimodal Spectra Integrated With Deep Learning Feature Fusion Using a Miniature Raman Spectrometer

人工智能 计算机科学 特征(语言学) 拉曼光谱 模式识别(心理学) 分光计 随机森林 物理 光学 哲学 语言学
作者
Qingbo Li,Shufan Chen
出处
期刊:Applied Spectroscopy [SAGE Publishing]
被引量:2
标识
DOI:10.1177/00037028241276013
摘要

The miniature fiber Raman spectroscopy detection technology can reflect the properties of biomolecules through spectral characteristics and has the advantages of noninvasiveness, real-time, safety, label-free operation, and potential for early cancer diagnosis. This technology holds promise for developing portable, low-cost, intraoperative tumor detection instruments. Glioma is one of the most common malignant tumors of the central nervous system with rapid growth and a short disease course. However, the considerable heterogeneity of the glioma sample leads to substantial intraclass variance in collected spectra, coupled with the miniature Raman spectrometer's low signal-to-noise ratio. These factors diminish the accuracy of the brain glioma recognition model. To address this issue, a glioma identification method based on digital multimodal spectra integrated with deep learning features fusion (DMS-DLFF) using the miniature Raman spectrometer is proposed. Different from existing multimodal tumor detection methods employing multiple spectral instruments, DMS-DLFF enhances tumor identification accuracy without increasing hardware costs. The method mathematically decomposes the original spectra to Raman and fluorescence spectra, so as to augment the biospectral information. Then, the deep learning method is used to extract the feature information of the two kinds of spectra, respectively, and the digital multimodal spectral fusion is realized at the feature level. Moreover, a two-layer pattern recognition model is constructed based on the ensemble strategy, amalgamating the strengths of diverse classifiers. Meanwhile, the bagging strategy is introduced to improve support vector machine algorithms, one of the basic classifiers. Compared with traditional methodologies, DMS-DLFF operates at both the feature level and decision level, employing high-information-density feature vectors to train ensemble classification models for increasing overall recognition accuracy. This study collected 260 Raman spectra of glioma and 151 Raman spectra of normal brain tissue. The accuracy, sensitivity, and specificity were 91.9%, 96.7%, and 80.8%, respectively. The proposed method outperforms traditional algorithms in brain glioma detection, which helps doctors formulate precise surgical plans and thereby improve patient prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jify完成签到,获得积分10
刚刚
坦率的小蚂蚁完成签到,获得积分10
刚刚
刚刚
阿星捌完成签到 ,获得积分10
1秒前
Janny发布了新的文献求助10
1秒前
czx发布了新的文献求助10
1秒前
上官若男应助逗逗采纳,获得10
1秒前
1秒前
2秒前
零点起步发布了新的文献求助10
2秒前
2秒前
闪闪落雁完成签到,获得积分10
2秒前
沐沐溪三清完成签到,获得积分10
3秒前
怕黑的班完成签到,获得积分10
3秒前
大方芾完成签到,获得积分10
3秒前
白白发布了新的文献求助10
4秒前
零零零零完成签到,获得积分10
4秒前
NexusExplorer应助xin采纳,获得10
5秒前
天使小五哥应助yyt采纳,获得10
5秒前
zonker完成签到,获得积分10
5秒前
6秒前
lelele发布了新的文献求助10
6秒前
6秒前
@@@完成签到,获得积分20
6秒前
6秒前
爱听歌的安珊完成签到,获得积分10
7秒前
迎风竹林下应助wsh采纳,获得10
7秒前
怎么会这样呢完成签到,获得积分20
7秒前
YuchaoJia发布了新的文献求助10
8秒前
9秒前
陶醉的念之完成签到,获得积分10
10秒前
duxh123发布了新的文献求助10
10秒前
xia完成签到,获得积分10
10秒前
二号完成签到,获得积分10
11秒前
yyyyyge完成签到,获得积分10
12秒前
Janny完成签到,获得积分20
12秒前
啦啦啦完成签到,获得积分10
12秒前
13秒前
13秒前
XUNGEER11完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
Canon of Insolation and the Ice-age Problem 400
Fire Protection Handbook, 21st Edition volume1和volume2 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3910600
求助须知:如何正确求助?哪些是违规求助? 3456276
关于积分的说明 10888270
捐赠科研通 3182386
什么是DOI,文献DOI怎么找? 1759067
邀请新用户注册赠送积分活动 850789
科研通“疑难数据库(出版商)”最低求助积分说明 792264