A practical path planning method for optimal repair paths between multiple small-size defects

蚁群优化算法 路径长度 数学优化 路径(计算) 启发式 遗传算法 计算机科学 算法 运动规划 数学 人工智能 计算机网络 机器人 程序设计语言
作者
Yongfeng Li,Yaotong Pan,Wenqiang Yang,Xiaochang Xu,Junpeng Xu,Lei Zhang
出处
期刊:Rapid Prototyping Journal [Emerald Publishing Limited]
卷期号:30 (10): 2089-2096
标识
DOI:10.1108/rpj-03-2024-0110
摘要

Purpose This study aims to solve the problem of repair path planning between multiple small-size defects in the field of additive manufacturing (AM) repair by using Python-based ant colony algorithm (ACO). The optimal parameter combination scheme is obtained by discussing the influencing factors of parameters in the ACO. Design/methodology/approach The effects of the information heuristic factor α , the expected heuristic factor ß and the pheromone volatile factor ρ on the simulation results were investigated by designing a three-factor and three-level orthogonal experiment. The fast convergence of ACO in finding the optimal solution of multiple small-size defect repair path problem is proved by comparing the simulation results with those of genetic algorithm (GA) on the same data set. Findings The ACO can effectively solve the repair path planning problem between multiple small-size defects by optimizing the parameters. In the case of 50 defect locations, the simulation results of the ACO with optimized parameters are 159.8 iterations and 3,688 average path lengths, while the GA has 4,027.2 average path lengths under the same data set and the same number of iterations, and by comparison, it is proved that the ACO can find the optimal solution quickly in the small-size defects repair path planning problem, which greatly improves the efficiency of defect repair. Originality/value The parameter-optimized ACO can be quickly applied to the planning problem of repair paths between multiple small-size defects in the field of AM repair, which can better improve the defect repair efficiency and reduce the waste of resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hannah发布了新的文献求助10
刚刚
朴素的代芹完成签到,获得积分10
刚刚
SciGPT应助小顾采纳,获得10
刚刚
万能图书馆应助狂奔弟弟采纳,获得10
刚刚
张美丽发布了新的文献求助20
1秒前
科研通AI5应助Ricewind采纳,获得10
1秒前
1秒前
粗犷的世平完成签到,获得积分10
2秒前
Ben发布了新的文献求助10
2秒前
大宝剑2号发布了新的文献求助10
3秒前
3秒前
慕青应助小哈采纳,获得10
3秒前
3秒前
香蕉觅云应助果糖不加糖采纳,获得10
3秒前
pure123发布了新的文献求助30
3秒前
wxy发布了新的文献求助10
4秒前
4秒前
果实发布了新的文献求助10
4秒前
5秒前
lucky完成签到,获得积分10
5秒前
史萌完成签到,获得积分10
5秒前
5秒前
SciGPT应助大气糖豆采纳,获得10
6秒前
yyyyyy完成签到 ,获得积分10
6秒前
科研通AI6应助默默冬瓜采纳,获得10
6秒前
6秒前
犹豫灵凡发布了新的文献求助10
6秒前
MAD666完成签到,获得积分10
6秒前
王彤发布了新的文献求助10
6秒前
小小吒儿完成签到,获得积分10
7秒前
科研通AI2S应助Hannah采纳,获得10
8秒前
自觉士萧发布了新的文献求助10
9秒前
快乐科研完成签到,获得积分10
9秒前
安详流沙发布了新的文献求助10
9秒前
粱夏烟发布了新的文献求助10
9秒前
9秒前
未来完成签到,获得积分20
10秒前
亲情之友发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098150
求助须知:如何正确求助?哪些是违规求助? 4310384
关于积分的说明 13430331
捐赠科研通 4137812
什么是DOI,文献DOI怎么找? 2266899
邀请新用户注册赠送积分活动 1270029
关于科研通互助平台的介绍 1206256