已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LLMOPT: Learning to Define and Solve General Optimization Problems from Scratch

刮擦 计算机科学 程序设计语言
作者
Caigao Jiang,Xiang Shu,Hong Qian,Xiong Lu,Jun Zhou,Aimin Zhou,Yu Yang
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2410.13213
摘要

Optimization problems are prevalent across various scenarios. Formulating and then solving optimization problems described by natural language often requires highly specialized human expertise, which could block the widespread application of optimization-based decision making. To automate problem formulation and solving, leveraging large language models (LLMs) has emerged as a potential way. However, this kind of approach suffers from the issue of optimization generalization. Namely, the accuracy of most current LLM-based methods and the generality of optimization problem types that they can model are still limited. In this paper, we propose a unified learning-based framework called LLMOPT to boost optimization generalization. Starting from the natural language descriptions of optimization problems and a pre-trained LLM, LLMOPT constructs the introduced five-element formulation as a universal model for learning to define diverse optimization problem types. Then, LLMOPT employs the multi-instruction tuning to enhance both problem formalization and solver code generation accuracy and generality. After that, to prevent hallucinations in LLMs, such as sacrificing solving accuracy to avoid execution errors, the model alignment and self-correction mechanism are adopted in LLMOPT. We evaluate the optimization generalization ability of LLMOPT and compared methods across six real-world datasets covering roughly 20 fields such as health, environment, energy and manufacturing, etc. Extensive experiment results show that LLMOPT is able to model various optimization problem types such as linear/nonlinear programming, mixed integer programming, and combinatorial optimization, and achieves a notable 11.08% average solving accuracy improvement compared with the state-of-the-art methods. The code is available at https://github.com/caigaojiang/LLMOPT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
want完成签到 ,获得积分10
1秒前
OK驳回了wbp应助
3秒前
核桃应助cdsd采纳,获得10
3秒前
4秒前
ZH完成签到,获得积分10
4秒前
kentonchow应助威威采纳,获得60
4秒前
wzh1745发布了新的文献求助200
6秒前
9秒前
9秒前
畅快访蕊完成签到,获得积分10
9秒前
五芳斋完成签到,获得积分10
10秒前
11秒前
syyyn完成签到,获得积分10
11秒前
weige完成签到,获得积分10
12秒前
eason发布了新的文献求助10
13秒前
柠檬薄荷完成签到,获得积分10
14秒前
哈哈小妖怪完成签到,获得积分10
14秒前
achill发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
重要的向南完成签到,获得积分10
16秒前
REad发布了新的文献求助10
16秒前
huohuo完成签到,获得积分10
17秒前
oxs完成签到 ,获得积分10
18秒前
18秒前
斯文败类应助achill采纳,获得10
19秒前
科研通AI6应助柠檬薄荷采纳,获得10
19秒前
青瓜大薯完成签到 ,获得积分10
19秒前
123完成签到,获得积分10
21秒前
21秒前
李文娜完成签到 ,获得积分10
22秒前
小周完成签到,获得积分10
23秒前
23秒前
24秒前
REad完成签到,获得积分10
24秒前
26秒前
rachel发布了新的文献求助10
27秒前
achill完成签到,获得积分10
27秒前
Cathy完成签到 ,获得积分10
28秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5385014
求助须知:如何正确求助?哪些是违规求助? 4507746
关于积分的说明 14028898
捐赠科研通 4417499
什么是DOI,文献DOI怎么找? 2426561
邀请新用户注册赠送积分活动 1419246
关于科研通互助平台的介绍 1397612