Prediction of Total Organic Carbon Content in Deep Marine Shale Reservoirs Based on a Super Hybrid Machine Learning Model

总有机碳 油页岩 卷积神经网络 人工神经网络 计算机科学 深度学习 模式识别(心理学) 人工智能 内容(测量理论) 分解 地质学 数学 生态学 古生物学 数学分析 生物
作者
Yi Liu,Na Li,Chengyong Li,Jiayu Jiang,Xiuhui Wu,Haipeng Liang,Dongxu Zhang,Xiuquan Hu
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:38 (18): 17483-17498
标识
DOI:10.1021/acs.energyfuels.4c02135
摘要

The total organic carbon (TOC) content is crucial for assessing the gas-bearing potential of shale reservoirs. Thus, quantitative characterization and intelligent prediction of TOC content play important roles in determining geological sweet spots and the development of shale reservoirs. Unfortunately, directly obtaining TOC content data in deep marine shale reservoirs is difficult, and the accuracy of indirect prediction remains insufficient. To efficiently and accurately predict TOC content, we propose a super hybrid prediction model, CVMD-CNN-BiLSTM-AT, which integrates correlation variational modal decomposition (CVMD), a convolutional neural network (CNN), a bidirectional long short-term memory network (BiLSTM), and an attention mechanism (AT). The model employs CVMD to remove noise signals from the original TOC sequence, decomposes the denoised sequence into stable subsequence components, and a CNN-BiLSTM prediction model is constructed for each one. In addition, we incorporate AT to assign the hidden layer probability weights of BiLSTM, which makes the model focus on high-importance features and assigns weights accordingly. Finally, the predicted subsequences are combined and reconstructed according to the decomposition law to obtain the final TOC content. Herein, 1007 core samples and their related well logging data were collected from 13 typical wells, among which data from 705 samples were utilized to train the model and the remaining data were utilized to validate and test the model. The study results indicate that the CVMD-CNN-BiLSTM-AT model has excellent and reliable predictive ability, with an R2 of 0.967 and can accurately predict TOC content. This achievement can provide adequate technical support and insight for deep marine shale gas exploration and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈的闭月完成签到,获得积分10
刚刚
HC完成签到 ,获得积分10
刚刚
稳重紫蓝完成签到 ,获得积分10
5秒前
马香芦完成签到,获得积分10
6秒前
自信松思完成签到 ,获得积分10
7秒前
跳跃太清完成签到 ,获得积分10
17秒前
木之尹完成签到 ,获得积分10
18秒前
啵妞完成签到 ,获得积分10
18秒前
幸福果汁完成签到 ,获得积分10
19秒前
你好完成签到 ,获得积分10
23秒前
cc完成签到,获得积分10
26秒前
卓初露完成签到 ,获得积分10
29秒前
zhilianghui0807完成签到 ,获得积分10
32秒前
又又完成签到,获得积分10
37秒前
652183758完成签到 ,获得积分10
39秒前
holy完成签到 ,获得积分10
45秒前
笨笨忘幽完成签到,获得积分10
50秒前
阿拉完成签到,获得积分10
52秒前
CQ完成签到 ,获得积分10
1分钟前
liuliu完成签到 ,获得积分10
1分钟前
罗鸯鸯完成签到,获得积分10
1分钟前
Daisy完成签到 ,获得积分10
1分钟前
yangjoy完成签到 ,获得积分10
1分钟前
back you up应助科研通管家采纳,获得50
1分钟前
罗鸯鸯发布了新的文献求助10
1分钟前
hyxu678完成签到,获得积分10
1分钟前
1分钟前
饼干发布了新的文献求助10
1分钟前
在水一方应助JING采纳,获得10
1分钟前
哈拉斯完成签到,获得积分10
1分钟前
1分钟前
大力的诗蕾完成签到 ,获得积分10
1分钟前
罗鸯鸯发布了新的文献求助10
1分钟前
周小鱼完成签到,获得积分10
1分钟前
wishe完成签到,获得积分10
1分钟前
fzh发布了新的文献求助10
1分钟前
shyxia完成签到 ,获得积分10
1分钟前
弧光完成签到 ,获得积分10
2分钟前
Sanmo完成签到,获得积分10
2分钟前
Curry完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336787
关于积分的说明 10282126
捐赠科研通 3053566
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468