GeoEntity-type constrained knowledge graph embedding for predicting natural-language spatial relations

计算机科学 嵌入 知识图 图形 自然语言 类型(生物学) 自然(考古学) 空间关系 人工智能 地理 自然语言处理 理论计算机科学 地质学 古生物学 考古
作者
Lei Hu,Wenwen Li,Jun Xu,Yunqiang Zhu
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:: 1-24 被引量:2
标识
DOI:10.1080/13658816.2024.2412731
摘要

Natural-language spatial relations between geographic entities (geoentities) reflect diverse perceptions influenced by factors like location, culture, and linguistic conventions. These relations play a crucial role in supporting geospatial tasks, such as question answering and cognitive reasoning. While prior studies focused on a limited set of human-selected spatial terms and geometric attributes, they often overlooked essential semantic attributes. To overcome this limitation, we developed a Spatial Relation-based Knowledge Graph Embedding framework, SR-KGE, with new KG fusion functions to predict spatial relation terms among distinct geoentities. This method not only considers graph structures and the diversity of natural language expressions in the embedding and learning process, but also incorporates geoentity types as a constraint to capture spatial and semantic relations more accurately. Our experiments on two knowledge graph datasets, one small-scale and one large-scale, have both shown its superior performance in spatial relation inference compared to popular KGE models, including TransE, RotatE, and HAKE. We hope our research will advance the classic study of natural language described spatial relations in a more automated and intelligent way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
年华发布了新的文献求助10
1秒前
乐乐应助帅气老虎采纳,获得10
1秒前
2秒前
JamesPei应助gyf采纳,获得10
3秒前
情怀应助一滴水采纳,获得10
5秒前
SYLH应助飞快的珩采纳,获得10
5秒前
欣慰若完成签到,获得积分20
6秒前
monere发布了新的文献求助10
6秒前
6秒前
6秒前
YYYYYYYYY发布了新的文献求助10
8秒前
云中歌完成签到,获得积分10
9秒前
10秒前
大模型应助刘家成采纳,获得10
10秒前
志在长空发布了新的文献求助10
10秒前
乐乐应助Priscilla采纳,获得10
10秒前
ding应助ohh采纳,获得10
11秒前
11秒前
11秒前
105完成签到,获得积分10
12秒前
13秒前
天天快乐应助vvA11采纳,获得10
13秒前
JoySue发布了新的文献求助10
14秒前
xdedd完成签到,获得积分10
14秒前
14秒前
14秒前
再沉默完成签到,获得积分10
15秒前
16秒前
温柔的鱼完成签到,获得积分10
16秒前
ziyuexu发布了新的文献求助10
17秒前
科研通AI5应助jz采纳,获得10
18秒前
18秒前
LexMz发布了新的文献求助10
18秒前
19秒前
再沉默发布了新的文献求助10
19秒前
滕骞完成签到,获得积分20
19秒前
帅气老虎发布了新的文献求助10
19秒前
19秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787493
求助须知:如何正确求助?哪些是违规求助? 3333123
关于积分的说明 10259242
捐赠科研通 3048542
什么是DOI,文献DOI怎么找? 1673135
邀请新用户注册赠送积分活动 801699
科研通“疑难数据库(出版商)”最低求助积分说明 760324