Frequency data driven damage detection of polymeric composite structural health using machine learning models

结构健康监测 有限元法 计算机科学 分层(地质) 分类器(UML) Python(编程语言) 复合数 结构工程 算法 人工智能 工程类 构造学 俯冲 生物 操作系统 古生物学
作者
Vikash Kumar,Pritam Pattanayak,Ashish Kumar Mehar,Subrata Kumar Panda
出处
期刊:Journal of Applied Mathematics and Mechanics [Wiley]
卷期号:104 (10) 被引量:1
标识
DOI:10.1002/zamm.202400481
摘要

Abstract Firstly, the effect of damages (crack and delamination) on frequency responses of the polymeric composite structures is predicted numerically in this research. The responses are computed numerically using the finite element technique associated with a higher‐order deformation kinematic model. The model accuracy has been verified by comparing the published frequency responses and in‐house experimental data. The verified model is extended to generate the desired data (frequencies) utilizing various input parameters related to the geometrical forms and damage types (shapes, sizes, and positions). Further, different machine learning models (MLMs) are developed using Python algorithms for the identification of structural health. In this regard, the extracted data sets are initially used to train the MLM, detect the damages, and identify types of damage and damage‐related data of polymeric structures. Out of all kinds of MLMs, it is understood that the Random Forest Classifier provides the best result, which had an accuracy of 94.66% with the optimal parameters. The precision accomplished is 97% for intact and 94% for damaged structures. The proposed algorithm is also capable of identifying the damage‐related parameters (shape, size, type, and position) and predicting the defects early to prevent unintended mishaps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朱文韬发布了新的文献求助10
刚刚
于莹发布了新的文献求助10
刚刚
chen完成签到 ,获得积分10
1秒前
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
夏cai发布了新的文献求助30
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
个性冰海发布了新的文献求助10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得30
2秒前
2秒前
ccm应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
李健应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
心心应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
ccm应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
大力的乐曲完成签到,获得积分10
3秒前
altail完成签到,获得积分10
4秒前
4秒前
4秒前
哥斯拉完成签到 ,获得积分10
5秒前
酶没美镁完成签到,获得积分0
7秒前
7秒前
ZRR发布了新的文献求助10
7秒前
8秒前
8秒前
个性冰海完成签到,获得积分20
9秒前
宋行健发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536933
求助须知:如何正确求助?哪些是违规求助? 4624592
关于积分的说明 14592446
捐赠科研通 4565023
什么是DOI,文献DOI怎么找? 2502125
邀请新用户注册赠送积分活动 1480875
关于科研通互助平台的介绍 1452098