Anatomy-specific Progression Classification in Chest Radiographs via Weakly Supervised Learning

射线照相术 医学 放射科 解剖 医学物理学 人工智能 计算机科学
作者
Ke Yu,Shantanu Ghosh,Zhexiong Liu,Christopher Deible,Clare B. Poynton,Kayhan Batmanghelich
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (5) 被引量:1
标识
DOI:10.1148/ryai.230277
摘要

Purpose To develop a machine learning approach for classifying disease progression in chest radiographs using weak labels automatically derived from radiology reports. Materials and Methods In this retrospective study, a twin neural network was developed to classify anatomy-specific disease progression into four categories: improved, unchanged, worsened, and new. A two-step weakly supervised learning approach was employed, pretraining the model on 243 008 frontal chest radiographs from 63 877 patients (mean age, 51.7 years ± 17.0 [SD]; 34 813 [55%] female) included in the MIMIC-CXR database and fine-tuning it on the subset with progression labels derived from consecutive studies. Model performance was evaluated for six pathologic observations on test datasets of unseen patients from the MIMIC-CXR database. Area under the receiver operating characteristic (AUC) analysis was used to evaluate classification performance. The algorithm is also capable of generating bounding-box predictions to localize areas of new progression. Recall, precision, and mean average precision were used to evaluate the new progression localization. One-tailed paired t tests were used to assess statistical significance. Results The model outperformed most baselines in progression classification, achieving macro AUC scores of 0.72 ± 0.004 for atelectasis, 0.75 ± 0.007 for consolidation, 0.76 ± 0.017 for edema, 0.81 ± 0.006 for effusion, 0.7 ± 0.032 for pneumonia, and 0.69 ± 0.01 for pneumothorax. For new observation localization, the model achieved mean average precision scores of 0.25 ± 0.03 for atelectasis, 0.34 ± 0.03 for consolidation, 0.33 ± 0.03 for edema, and 0.31 ± 0.03 for pneumothorax. Conclusion Disease progression classification models were developed on a large chest radiograph dataset, which can be used to monitor interval changes and detect new pathologic conditions on chest radiographs. Keywords: Prognosis, Unsupervised Learning, Transfer Learning, Convolutional Neural Network (CNN), Emergency Radiology, Named Entity Recognition Supplemental material is available for this article. © RSNA, 2024 See also commentary by Alves and Venkadesh in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chc完成签到,获得积分10
1秒前
MoonLithe关注了科研通微信公众号
1秒前
1秒前
榜一大哥的负担完成签到 ,获得积分10
2秒前
归尘发布了新的文献求助10
2秒前
小小完成签到,获得积分10
3秒前
4秒前
5秒前
腼腆的斩完成签到,获得积分20
6秒前
Mikaelson应助西瓜采纳,获得30
7秒前
10秒前
10秒前
11秒前
zyx发布了新的文献求助10
11秒前
无限的沅完成签到,获得积分10
13秒前
JayWu发布了新的文献求助10
13秒前
李爱国应助清脆的恶天采纳,获得10
13秒前
杜阳辉发布了新的文献求助10
13秒前
彭于晏应助LC采纳,获得30
14秒前
17秒前
18秒前
19秒前
20秒前
特敖桃应助Rex采纳,获得10
21秒前
夏xia完成签到,获得积分10
21秒前
22秒前
QQQ完成签到 ,获得积分10
22秒前
24秒前
楼秋寒发布了新的文献求助10
24秒前
26秒前
肥鹏发布了新的文献求助10
27秒前
qicaoji发布了新的文献求助10
29秒前
Gavin发布了新的文献求助10
30秒前
30秒前
玩命的小虾米完成签到 ,获得积分10
31秒前
任乐乐发布了新的文献求助20
31秒前
KYT2025完成签到,获得积分20
32秒前
冷静访梦完成签到,获得积分10
33秒前
zyx完成签到,获得积分10
34秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3912947
求助须知:如何正确求助?哪些是违规求助? 3458306
关于积分的说明 10899525
捐赠科研通 3184567
什么是DOI,文献DOI怎么找? 1760313
邀请新用户注册赠送积分活动 851450
科研通“疑难数据库(出版商)”最低求助积分说明 792716