Validation of an Electronic Health Record–Based Machine Learning Model Compared With Clinical Risk Scores for Gastrointestinal Bleeding

胃肠道出血 电子健康档案 便血 急诊科 接收机工作特性 医学 弗雷明翰风险评分 急诊医学 队列 急诊分诊台 曲线下面积 机器学习 结肠镜检查 计算机科学 内科学 医疗保健 结直肠癌 经济 疾病 癌症 精神科 经济增长
作者
Dennis Shung,Colleen Chan,Kisung You,Shinpei Nakamura,Theo Saarinen,Neil S. Zheng,Michael Simonov,Darrick K. Li,Cynthia Tsay,Yuki I. Kawamura,Matthew Shen,Allen Hsiao,Jasjeet S. Sekhon,Loren Laine
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:167 (6): 1198-1212 被引量:3
标识
DOI:10.1053/j.gastro.2024.06.030
摘要

Abstract

Background & Aims

Guidelines recommend use of risk stratification scores for patients presenting with gastrointestinal bleeding (GIB) to identify very-low-risk patients eligible for discharge from emergency departments. Machine learning models may outperform existing scores and can be integrated within the electronic health record (EHR) to provide real-time risk assessment without manual data entry. We present the first EHR-based machine learning model for GIB.

Methods

The training cohort comprised 2,546 patients and internal validation of 850 patients presenting with overt GIB (hematemesis, melena, hematochezia) to emergency departments of 2 hospitals from 2014-2019. External validation was performed on 926 patients presenting to a different hospital with the same EHR from 2014-2019. The primary outcome was a composite of red-blood-cell transfusion, hemostatic intervention (endoscopic, interventional radiologic, or surgical), and 30-day all-cause mortality. We used structured data fields in the EHR available within 4 hours of presentation and compared performance of machine learning models to current guideline-recommended risk scores, Glasgow-Blatchford Score (GBS) and Oakland Score. Primary analysis was area under the receiver-operating-characteristic curve (AUC). Secondary analysis was specificity at 99% sensitivity to assess proportion of patients correctly identified as very-low-risk.

Results

The machine learning model outperformed the GBS (AUC=0.92 vs. 0.89;p<0.001) and Oakland score (AUC=0.92 vs. 0.89;p<0.001). At the very-low-risk threshold of 99% sensitivity, the machine learning model identified more very-low-risk patients: 37.9% vs. 18.5% for GBS and 11.7% for Oakland score (p<0.001 for both comparisons).

Conclusions

An EHR-based machine learning model performs better than currently recommended clinical risk scores and identifies more very-low-risk patients eligible for discharge from the emergency department.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
于冷松完成签到,获得积分10
刚刚
刚刚
lin完成签到,获得积分10
刚刚
xzy发布了新的文献求助20
1秒前
巧克力发布了新的文献求助10
1秒前
于晏发布了新的文献求助10
2秒前
传奇3应助王博士采纳,获得10
2秒前
不安雨灵发布了新的文献求助10
2秒前
2秒前
yaoyao完成签到,获得积分10
2秒前
LYQ完成签到,获得积分10
3秒前
思源应助蜡笔小鑫采纳,获得10
3秒前
4秒前
善学以致用应助猫喵喵采纳,获得10
4秒前
沉默毛巾完成签到 ,获得积分10
4秒前
songxin完成签到,获得积分10
4秒前
withone发布了新的文献求助10
5秒前
天天快乐应助123呵呵采纳,获得30
5秒前
5秒前
6秒前
Allen发布了新的文献求助10
7秒前
陆木子完成签到,获得积分10
7秒前
7秒前
7秒前
哈基米德应助CC采纳,获得10
8秒前
小美完成签到 ,获得积分10
9秒前
mmm发布了新的文献求助10
9秒前
9秒前
LeiDY发布了新的文献求助10
10秒前
洁净的天思完成签到,获得积分10
11秒前
11秒前
陈百川应助FOOL采纳,获得10
11秒前
陶醉雪青应助FOOL采纳,获得10
12秒前
12秒前
依云矿泉水完成签到,获得积分10
12秒前
111111完成签到 ,获得积分10
13秒前
13秒前
13秒前
于晏完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075278
求助须知:如何正确求助?哪些是违规求助? 4295158
关于积分的说明 13383568
捐赠科研通 4116817
什么是DOI,文献DOI怎么找? 2254505
邀请新用户注册赠送积分活动 1259126
关于科研通互助平台的介绍 1191907